The completion of L-topological groups

Fatma Bayoumi* and Ismail Ibedou

Department of Mathematics, Faculty of Sciences, Benha University, Benha 12517, Egypt

Abstract

The target in this paper, is to extend an *L*-topological group to a complete *L*-topological group, and so giving the notion of the completion of an *L*-topological group. In the way, we have introduced the notion of the completion of an *L*-uniform space.

Keywords: L-topological groups; complete L-topological groups; L-uniform spaces; complete L-uniform spaces; \mathcal{U} -cauchy filters; L-filters; L-topological spaces.

1. Introduction

In this paper, we gave new notions of L-filter, L-uniform space and L-topological group. We defined, in an L-uniform space (X,\mathcal{U}) , a \mathcal{U} -cauchy filter and have shown when (X,\mathcal{U}) to be a complete L-uniform space, and also how an L-topological group (G,τ) to be complete. Finally, the completion of an L-uniform space and the completion of an L-topological group are investigated.

In Section 2, we recall some results of L-filters and L-neighborhood filters defined by Gähler in [11, 13, 14]. Also, we have defined the product of two L-sets and the product of two L-filters.

In Section 3, we have defined in an L-uniform space (X, \mathcal{U}) , a new notion of L-filter called \mathcal{U} -cauchy filter. We showed that any convergent L-filter is a \mathcal{U} -cauchy filter and the converse holds in the complete L-uniform spaces.

Section 4 is devoted to show how to extend an L-uniform space to a complete L-uniform space, and so the completion of an L-uniform space here is given as a reduced extension L-uniform space with a complete L-uniform structure.

In Section 5, using the *L*-uniform structures \mathcal{U}^l and \mathcal{U}^r defined on the *L*-topological group (G,τ) which are compatible with τ as in [8], we shall define the notion of *complete L*-topological group. A complete separated *L*-topological group (H,σ) in which (G,τ) is a dense subgroup will be called a completion of (G,τ) .

^{*}Corresponding author: e-mail: fatma_bayoumi@hotmail.com

2. On L-filters

In this section, we recall and show some results concerning L-filters needed in the paper. Denote by L^X the set of all L-subsets of a non-empty set X, where L is a complete chain with different least and greatest elements 0 and 1, respectively [19]. For each L-set $\lambda \in L^X$, let λ' denote the complement of λ , defined by $\lambda'(x) = \lambda(x)'$ for all $x \in X$. For all $x \in X$ and $\alpha \in L_0$, the L-subset x_α of X whose value α at x and 0 otherwise is called an L-point in X and the constant L-subset of X with value α will be denoted by $\overline{\alpha}$.

L-filters. By an L-filter on a non-empty set X we mean [13] a mapping $\mathcal{M}: L^X \to L$ such that $\mathcal{M}(\overline{\alpha}) \leq \alpha$ for all $\alpha \in L$ and $\mathcal{M}(\overline{1}) = 1$, and also $\mathcal{M}(\lambda \wedge \mu) = \mathcal{M}(\lambda) \wedge \mathcal{M}(\mu)$ for all $\lambda, \mu \in L^X$. \mathcal{M} is called homogeneous [11] if $\mathcal{M}(\overline{\alpha}) = \alpha$ for all $\alpha \in L$. If \mathcal{M} and \mathcal{N} are L-filters on X, \mathcal{M} is called finer than \mathcal{N} , denoted by $\mathcal{M} \leq \mathcal{N}$, provided $\mathcal{M}(\lambda) \geq \mathcal{N}(\lambda)$ holds for all $\lambda \in L^X$.

Let $\mathcal{F}_L X$ denote the set of all L-filters on X, $f: X \to Y$ a mapping and \mathcal{M} , \mathcal{N} are L-filters on X, Y, respectively. Then the image of \mathcal{M} and the preimage of \mathcal{N} with respect to f are the L-filters $\mathcal{F}_L f(\mathcal{M})$ on Y and $\mathcal{F}_L^- f(\mathcal{N})$ on X defined by $\mathcal{F}_L f(\mathcal{M})(\mu) = \mathcal{M}(\mu \circ f)$ for all $\mu \in L^Y$ and $\mathcal{F}_L^- f(\mathcal{N})(\lambda) = \bigvee_{\mu \circ f \leq \lambda} \mathcal{N}(\mu)$ for all $\lambda \in L^X$, respectively. For each mapping $f: X \to Y$ and each L-filter \mathcal{N} on Y, for which the preimage $\mathcal{F}_L^- f(\mathcal{N})$ exists, we have $\mathcal{F}_L f(\mathcal{F}_L^- f(\mathcal{N})) \leq \mathcal{N}$. Moreover, for each L-filter \mathcal{M} on X, the inequality $\mathcal{M} \leq \mathcal{F}_L^- f(\mathcal{F}_L f(\mathcal{M}))$ holds [13].

For each non-empty set A of L-filters on X, the supremum $\bigvee_{\mathcal{M} \in A} \mathcal{M}$ with respect to the finer relation of L-filters exists and we have

$$(\bigvee_{\mathcal{M}\in A}\mathcal{M})(f)=\bigwedge_{\mathcal{M}\in A}\mathcal{M}(f)$$

for all $f \in L^X$. The infimum $\bigwedge_{\mathcal{M} \in A} \mathcal{M}$ of A exists if and only if for each non-empty finite subset $\{\mathcal{M}_1, \ldots, \mathcal{M}_n\}$ of A we have $\mathcal{M}_1(\lambda_1) \wedge \cdots \wedge \mathcal{M}_n(\lambda_n) \leq \sup(\lambda_1 \wedge \cdots \wedge \lambda_n)$ for all $\lambda_1, \ldots, \lambda_n \in L^X$ [11]. If the infimum of A exists, then for each $\lambda \in L^X$ and n as a positive integer we have

$$(\bigwedge_{\mathcal{M}\in A}\mathcal{M})(\lambda) = \bigvee_{\substack{\lambda_1\wedge\cdots\wedge\lambda_n\leq\lambda,\\\mathcal{M}_1,\ldots,\mathcal{M}_n\in A}} (\mathcal{M}_1(\lambda_1)\wedge\cdots\wedge\mathcal{M}_n(\lambda_n)).$$

By a filter on X we mean a non-empty subset \mathcal{F} of L^X which does not contain $\overline{0}$ and closed under finite infima and super sets [17]. For each L-filter \mathcal{M} on X, the subset α -pr \mathcal{M} of L^X defined by: α -pr $\mathcal{M} = \{\lambda \in L^X \mid \mathcal{M}(\lambda) \geq \alpha\}$ is a filter on X.

A family $(\mathcal{B}_{\alpha})_{\alpha \in L_0}$ of non-empty subsets of L^X is called valued L-filter base on X [13] if the following conditions are fulfilled:

- (V1) $\lambda \in \mathcal{B}_{\alpha}$ implies $\alpha \leq \sup \lambda$.
- (V2) For all $\alpha, \beta \in L_0$ and all L-sets $\lambda \in \mathcal{B}_{\alpha}$ and $\mu \in \mathcal{B}_{\beta}$, if even $\alpha \wedge \beta > 0$ holds, then there are a $\gamma \geq \alpha \wedge \beta$ and an L-set $\nu \leq \lambda \wedge \mu$ such that $\nu \in \mathcal{B}_{\gamma}$.

Each valued L-filter base $(\mathcal{B}_{\alpha})_{\alpha \in L_0}$ on a set X defines an L-filter \mathcal{M} on X by: $\mathcal{M}(\lambda) = \bigvee_{\mu \in \mathcal{B}_{\alpha}, \mu \leq \lambda} \alpha$ for all $\lambda \in L^X$. On the other hand, each L-filter \mathcal{M} can be generated by many valued L-filter bases, and among them the greatest one $(\alpha\text{-pr }\mathcal{M})_{\alpha \in L_0}$.

Proposition 2.1 [13] There is a one-to-one correspondence between the L- filters \mathcal{M} on X and the families $(\mathcal{M}_{\alpha})_{\alpha \in L_0}$ of prefilters on X which fulfill the following conditions:

- (1) $f \in \mathcal{M}_{\alpha} \text{ implies } \alpha \leq \sup f$.
- (2) $0 < \alpha \leq \beta \text{ implies } \mathcal{M}_{\alpha} \supseteq \mathcal{M}_{\beta}.$
- (3) For each $\alpha \in L_0$ with $\bigvee_{0 < \beta < \alpha} \beta = \alpha$ we have $\bigcap_{0 < \beta < \alpha} \mathcal{M}_{\beta} = \mathcal{M}_{\alpha}$.

This correspondence is given by $\mathcal{M}_{\alpha} = \alpha\text{-pr}\,\mathcal{M}$ for all $\alpha \in L_0$ and $\mathcal{M}(f) = \bigvee_{g \in \mathcal{M}_{\alpha}, g \leq f} \alpha$ for all $f \in L^X$.

L-neighborhood filters. In the following, the topology in sense of [10, 16] will be used which will be called L-topology. $\operatorname{int}_{\tau}$ and cl_{τ} denote the interior and the closure operators with respect to the L-topology τ , respectively. For each L-topological space (X,τ) and each $x\in X$ the mapping $\mathcal{N}(x):L^X\to L$ defined by: $\mathcal{N}(x)(\lambda)=\operatorname{int}_{\tau}\lambda(x)$ for all $\lambda\in L^X$ is an L-filter on X, called the L-neighborhood filter of the space (X,τ) at x, and for short is called a τ -neighborhood filter at x. The mapping $\dot{x}:L^X\to L$ defined by $\dot{x}(\lambda)=\lambda(x)$ for all $\lambda\in L^X$ is a homogeneous L-filter on X. Let (X,τ) and (Y,σ) be two L-topological spaces. Then the mapping $f:(X,\tau)\to (Y,\sigma)$ is called L-continuous (or (τ,σ) -continuous) provided $\operatorname{int}_{\sigma}\mu\circ f\leq \operatorname{int}_{\tau}(\mu\circ f)$ for all $\mu\in L^Y$. An L-filter \mathcal{M} is said to converge to $x\in X$, denoted by $\mathcal{M}\xrightarrow{\tau} x$, if $\mathcal{M}\leq \mathcal{N}(x)$ [14]. The L-neighborhood filter $\mathcal{N}(F)$ at an ordinary subset F of X is the L-filter on X defined, by the authors in [3], by means of $\mathcal{N}(x)$, $x\in F$ as:

$$\mathcal{N}(F) = \bigvee_{x \in F} \mathcal{N}(x).$$

The *L*-filter \dot{F} is defined by $\dot{F} = \bigvee_{x \in F} \dot{x}$. $\dot{F} \leq \mathcal{N}(F)$ holds for all $F \subseteq X$.

Lemma 2.1 [14] Let (X, τ) and (Y, σ) be two L-topological spaces and \mathcal{M} an L-filter on X, and let $f: X \to Y$ be a (τ, σ) -continuous mapping. Then $\mathcal{M} \xrightarrow{\tau} x$ implies that $\mathcal{F}_L f(\mathcal{M}) \xrightarrow{\sigma} f(x)$.

Firstly, let us give this important definition.

For $\lambda, \mu \in L^X$, let $\lambda \times \mu : X \times X \to L$ be the L-set defined as follows:

$$(\lambda \times \mu)(x,y) = \lambda(x) \wedge \mu(y) \tag{2.1}$$

for all $x, y \in X$.

Remark 2.1 For all $\lambda, \mu, \xi, \eta \in L^X$, we have

$$(\lambda \wedge \mu) \times (\xi \wedge \eta) \ = \ (\lambda \times \xi) \wedge (\mu \times \eta) \ = \ (\lambda \times \eta) \wedge (\mu \times \xi).$$

Proposition 2.2 For any two L-filters \mathcal{L}, \mathcal{M} on X, the mapping $\mathcal{L} \times \mathcal{M} : L^{X \times X} \to L$ defined by

$$(\mathcal{L} \times \mathcal{M})(u) = \bigvee_{\lambda \times \mu < u} (\mathcal{L}(\lambda) \wedge \mathcal{M}(\mu))$$
 (2.2)

for all $u \in L^{X \times X}$ is an L-filter on $X \times X$.

Proof. From (2.1) and that \mathcal{L}, \mathcal{M} are L-filters, we get that

$$(\mathcal{L} \times \mathcal{M})(\widetilde{\alpha}) = \bigvee_{\lambda \times \mu \leq \widetilde{\alpha}} (\mathcal{L}(\lambda) \wedge \mathcal{M}(\mu)) \leq \alpha.$$

Moreover, $(\mathcal{L} \times \mathcal{M})(\widetilde{1}) = 1$.

From Remark 2.1 and for all $u, v \in L^{X \times X}$, we get that

$$(\mathcal{L} \times \mathcal{M})(u) \wedge (\mathcal{L} \times \mathcal{M})(v) = \bigvee_{\lambda \times \mu \leq u} (\mathcal{L}(\lambda) \wedge \mathcal{M}(\mu)) \wedge \bigvee_{\xi \times \eta \leq v} (\mathcal{L}(\xi) \wedge \mathcal{M}(\eta))$$

$$= \bigvee_{\lambda \times \mu \leq u, \xi \times \eta \leq v} (\mathcal{L}(\lambda \wedge \xi) \wedge \mathcal{M}(\mu \wedge \eta))$$

$$\leq \bigvee_{(\lambda \wedge \xi) \times (\mu \wedge \eta) \leq u \wedge v} (\mathcal{L}(\lambda \wedge \xi) \wedge \mathcal{M}(\mu \wedge \eta))$$

$$= (\mathcal{L} \times \mathcal{M})(u \wedge v).$$

Also,

$$(\mathcal{L} \times \mathcal{M})(u \wedge v) = \bigvee_{\lambda \times \mu \leq u \wedge v} (\mathcal{L}(\lambda) \wedge \mathcal{M}(\mu))$$

$$\leq \bigvee_{\lambda \times \mu \leq u, \lambda \times \mu \leq v} (\mathcal{L}(\lambda) \wedge \mathcal{M}(\mu))$$

$$= \bigvee_{\lambda \times \mu \leq u} (\mathcal{L}(\lambda) \wedge \mathcal{M}(\mu)) \wedge \bigvee_{\lambda \times \mu \leq v} (\mathcal{L}(\lambda) \wedge \mathcal{M}(\mu))$$

$$= (\mathcal{L} \times \mathcal{M})(u) \wedge (\mathcal{L} \times \mathcal{M})(v).$$

Hence, $(\mathcal{L} \times \mathcal{M})$ is an L-filter on $X \times X$. \square

Here, we prove the following result.

Lemma 2.2 Let \mathcal{L} and \mathcal{M} be L-filters on X, and let $(\mathcal{L}_{\alpha})_{\alpha \in L_0}$ and $(\mathcal{M}_{\alpha})_{\alpha \in L_0}$ be the families of prefilters on X correspond, according to Proposition 2.1, \mathcal{L} and \mathcal{M} , respectively. Then the family $(\mathcal{K}_{\alpha})_{\alpha \in L_0}$ of subsets \mathcal{K}_{α} of $L^{X \times X}$, where

$$\mathcal{K}_{\alpha} = \{ \lambda \times \mu \mid \lambda \in \mathcal{L}_{\alpha}, \, \mu \in \mathcal{M}_{\alpha} \}, \tag{2.3}$$

is a family of prefilters on $X \times X$ corresponds the L-filter $\mathcal{L} \times \mathcal{M}$.

Proof. Firstly, we show that, for all $\alpha \in L_0$, \mathcal{K}_{α} is a prefilter on $X \times X$. For any $\alpha \in L_0$, we have $\mathcal{K}_{\alpha} = \{\lambda \times \mu \mid \lambda \in \mathcal{L}_{\alpha}, \, \mu \in \mathcal{M}_{\alpha}\}$ is non-empty, where \mathcal{L}_{α} and \mathcal{M}_{α} are non-empty for all $\alpha \in L_0$. Also, $\overline{0}$ does not exist in \mathcal{L}_{α} or \mathcal{M}_{α} implies that $\overline{0} \notin \mathcal{K}_{\alpha}$ for all $\alpha \in L_0$. From Remark 2.1 and from that \mathcal{L}_{α} and \mathcal{M}_{α} are prefilters, we get for all $u, v \in \mathcal{K}_{\alpha}$ and $w \geq v$ that $u \wedge v \in \mathcal{K}_{\alpha}$ and $w \in \mathcal{K}_{\alpha}$ for all $\alpha \in L_0$. That is, \mathcal{K}_{α} , for all $\alpha \in L_0$, is a prefilter on $X \times X$.

Let $u \in \mathcal{K}_{\alpha}$. Then $u = \lambda \times \mu$, where $\lambda \in \mathcal{L}_{\alpha}$ and $\mu \in \mathcal{M}_{\alpha}$, which implies that $\alpha \leq \sup \lambda$, $\alpha \leq \sup \mu$, and $\alpha \leq \sup (\lambda \times \mu) = \sup u$, that is, condition (1) of Proposition 2.1 holds.

Let $0 < \alpha \leq \beta$ and $u \in \mathcal{K}_{\beta}$. Then $u = \lambda \times \mu$, where $\lambda \in \mathcal{L}_{\beta}$ and $\mu \in \mathcal{M}_{\beta}$, which implies, from $\mathcal{L}_{\alpha} \supseteq \mathcal{L}_{\beta}$ and $\mathcal{M}_{\alpha} \supseteq \mathcal{M}_{\beta}$, that $\lambda \in \mathcal{L}_{\alpha}$ and $\mu \in \mathcal{M}_{\alpha}$, that is, $u \in \mathcal{K}_{\alpha}$ and condition (2) of Proposition 2.1 is fulfilled.

Since
$$\bigcap_{0<\beta<\alpha} \mathcal{L}_{\beta} = \mathcal{L}_{\alpha}$$
 and $\bigcap_{0<\beta<\alpha} \mathcal{M}_{\beta} = \mathcal{M}_{\alpha}$, we get that
$$\bigcap_{0<\beta<\alpha} \mathcal{K}_{\beta} = \bigcap_{0<\beta<\alpha} \{\lambda \times \mu \mid \lambda \in \mathcal{L}_{\beta}, \mu \in \mathcal{M}_{\beta}\} \\
= \{\lambda \times \mu \mid \lambda \in \bigcap_{0<\beta<\alpha} \mathcal{L}_{\beta}, \mu \in \bigcap_{0<\beta<\alpha} \mathcal{M}_{\beta}\} \\
= \{\lambda \times \mu \mid \lambda \in \mathcal{L}_{\alpha}, \mu \in \mathcal{M}_{\alpha}\} \\
= \mathcal{K}$$

which means that condition (3) of Proposition 2.1 holds.

Hence, there is a one - to - one correspondence between the family $(\mathcal{K}_{\alpha})_{\alpha \in L_0}$ of the prefilters on $X \times X$, defined by (2.3), and the *L*-filter $\mathcal{L} \times \mathcal{M}$ on $X \times X$, according to Proposition 2.1, where

$$(\mathcal{L} \times \mathcal{M})(u) = \bigvee_{v \in \mathcal{K}_{\alpha}, v \le u} \alpha \text{ and } \alpha\text{-pr}(\mathcal{L} \times \mathcal{M}) = \mathcal{K}_{\alpha}$$

for all $u \in L^{X \times X}$ and for all $\alpha \in L_0$. \square

3. \mathcal{U} -cauchy filters

This section is devoted to speak of the cauchy filters in the L-uniform spaces defined in [15].

L-uniform spaces. An L-filter \mathcal{U} on $X \times X$ is called L-uniform structure on X [15] if the following conditions are fulfilled:

- (U1) $(x,x)^{\cdot} \leq \mathcal{U}$ for all $x \in X$;
- (U2) $U = U^{-1}$:
- (U3) $\mathcal{U} \circ \mathcal{U} < \mathcal{U}$.

Where
$$(x,x)^{\bullet}(u)=u(x,x)$$
, $\mathcal{U}^{-1}(u)=\mathcal{U}(u^{-1})$ and $(\mathcal{U}\circ\mathcal{U})(u)=\bigvee_{v\circ w\leq u}\mathcal{U}(v\wedge w)$ for all $u\in L^{X\times X}$, and $u^{-1}(x,y)=u(y,x)$ and $(v\circ w)(x,y)=\bigvee_{z\in X}(w(x,z)\wedge v(z,y))$ for all $x,y\in X$.

A set X equipped with an L-uniform structure \mathcal{U} is called an L-uniform space.

To each L-uniform structure \mathcal{U} on X is associated a stratified L-topology $\tau_{\mathcal{U}}$. The related interior operator $\operatorname{int}_{\mathcal{U}}$ is given by:

$$(\operatorname{int}_{\mathcal{U}}\lambda)(x) = \mathcal{U}[\dot{x}](\lambda)$$

for all $x \in X$ and all $\lambda \in L^X$, where $\mathcal{U}[\dot{x}](\lambda) = \bigvee_{u[\mu] \leq \lambda} (\mathcal{U}(u) \wedge \mu(x))$ and $u[\mu](x) = \bigvee_{y \in X} (\mu(y) \wedge u(y,x))$. For all $x \in X$ we have

$$\mathcal{U}[\dot{x}] = \mathcal{N}(x)$$

where $\mathcal{N}(x)$ is the *L*-neighborhood filter of the space $(X, \tau_{\mathcal{U}})$ at x. That is, an *L*-filter \mathcal{M} in an *L*-uniform space (X, \mathcal{U}) is said to converge to $x \in X$ if $\mathcal{M} \leq \mathcal{U}[\dot{x}]$.

Let \mathcal{U} be an L-uniform structure on a set X. Then $u \in L^{X \times X}$ is called a *surrounding* provided $\mathcal{U}(u) \geq \alpha$ for some $\alpha \in L_0$ and $u = u^{-1}$ [8].

A subset $A \subseteq X$, for a surrounding u in (X, \mathcal{U}) , is called *small of order* u if $u(x, y) \ge \alpha$ for all $x, y \in A$ and for some $\alpha \in L_0$.

Definition 3.1 In an L-uniform space (X, \mathcal{U}) , an L-filter \mathcal{M} on X is said to be a \mathcal{U} -cauchy filter provided for any surrounding u, there exists a set $B \subseteq X$ such that $\mathcal{M} \leq \dot{B}$ and B is small of order u.

Now, we have the following expected result for the convergent L-filters.

Proposition 3.1 Every convergent L-filter in an L-uniform space (X, \mathcal{U}) is a \mathcal{U} -cauchy filter.

Proof. Let \mathcal{M} be an L-filter on X which converges to $x \in X$. Since $\mathcal{M} \leq \mathcal{U}[\dot{x}]$, then we can choose a set $B \subseteq X$ such that $\mathcal{M} \leq \dot{B} = \mathcal{U}[\dot{x}]$, that is,

$$\mathcal{M}(\lambda) \ge \bigvee_{u[\mu] \le \lambda} (\mathcal{U}(u) \land \mu(x)) = \bigwedge_{y \in B} \lambda(y) = \dot{B}(\lambda)$$

for all $\lambda \in L^X$. Since $(x,x)^{\bullet} \leq \mathcal{U}$ for all $x \in X$, then $u(x,x) \geq \mathcal{U}(u) \geq \alpha$ for any surrounding u and for some $\alpha \in L_0$, that is, $u(x,x) \geq \alpha$ for all $x \in X$ and for some $\alpha \in L_0$. Now, $x \in B$ where $\dot{x} \leq \mathcal{U}[\dot{x}] = \dot{B}$. Also, for any $y \in B$ we get that $\bigvee_{u[\mu] \leq \lambda} (\alpha \wedge \mu(x)) \leq \lambda(y)$, for which $\bigvee_{z} (u(z,y) \wedge \mu(z)) \leq \lambda(y)$, and so $\alpha \wedge \mu(x) \leq u(x,y) \wedge \mu(x) \leq \lambda(y)$, and thus for all $x, y \in B$, we have $u(x,y) \geq \alpha$ for some $\alpha \in L_0$ and $\mathcal{M} \leq \dot{B}$. Hence, there is a set $B \subseteq X$ small of order any surrounding u in (X,\mathcal{U}) and $\mathcal{M} \leq \dot{B}$, and therefore \mathcal{M} is a \mathcal{U} -cauchy filter on X. \square

Let A be a subset of a set X, \mathcal{U} an L-uniform structure on X and $i: A \hookrightarrow X$ the inclusion mapping of A into X. Then the initial L-uniform structure $\mathcal{F}_L^-(i \times i)(\mathcal{U})$ of \mathcal{U} with respect to i, denoted by \mathcal{U}_A , is called an L-uniform substructure of \mathcal{U} and (A, \mathcal{U}_A) an L-uniform subspace of (X, \mathcal{U}) [4].

In particular, we have the following result.

Lemma 3.1 Let (X, \mathcal{U}) be an L-uniform space and A a non-empty subset of X. Then an L-filter on A is a \mathcal{U}_A -cauchy filter if and only if it is a \mathcal{U} -cauchy filter.

Proof. Let \mathcal{M} be a \mathcal{U}_A -cauchy filter on A, then there exists $B \subseteq A$ with $\mathcal{M} \leq \dot{B}$ and B is small of order any surrounding u_A in (A, \mathcal{U}_A) , which means that there is $B \subseteq A \subseteq X$ such that $\mathcal{M} \leq \dot{B}$ and $u_A(x,y) \geq \alpha$ for all $x,y \in B$ and for some $\alpha \in L_0$, that is, for any surrounding u in (X,\mathcal{U}) ,

$$u(x,y) = (u \circ (i \times i))(x,y) = u_A(x,y) \ge \alpha$$

for all $x, y \in B$ and for some $\alpha \in L_0$, and then $\mathcal{M} \leq \dot{B}$ and $B \subseteq X$ is small of order any surrounding u in (X, \mathcal{U}) . Hence, \mathcal{M} is a \mathcal{U} -cauchy filter.

Conversely; there exists $B \subseteq A \subseteq X$ with $\mathcal{M} \leq B$ and B is small of order any surrounding u in (X,\mathcal{U}) , that is, $u(x,y) \geq \alpha$ for all $x,y \in B$ and for some $\alpha \in L_0$, which means that, for every surrounding u_A in (A,\mathcal{U}_A) ,

$$u_A(x,y) = (u \circ (i \times i))(x,y) = u(x,y) \ge \alpha$$

for all $x, y \in B$ and for some $\alpha \in L_0$. Hence, $\mathcal{M} \leq \dot{B}$ and $B \subseteq A$ is small of order any surrounding u_A in (A, \mathcal{U}_A) , and thus \mathcal{M} is a \mathcal{U}_A -cauchy filter. \square

A mapping $f:(X,\mathcal{U})\to (Y,\mathcal{V})$ between L-uniform spaces (X,\mathcal{U}) and (Y,\mathcal{V}) is said to be L-uniformly continuous (or $(\mathcal{U},\mathcal{V})$ -continuous) provided

$$\mathcal{F}_L(f \times f)(\mathcal{U}) \leq \mathcal{V}$$

holds.

We shall use this result.

Lemma 3.2 Let (X,\mathcal{U}) and (Y,\mathcal{V}) be L-uniform spaces and $f: X \to Y$ a $(\mathcal{U},\mathcal{V})$ -continuous mapping. If \mathcal{M} is a \mathcal{U} -cauchy filter, then $\mathcal{F}_L f(\mathcal{M})$ is a \mathcal{V} -cauchy filter.

Proof. \mathcal{M} is a \mathcal{U} -cauchy filter on X means that there exists $B \subseteq X$ such that $\mathcal{M} \leq B$ and B is small of order any surrounding u in (X,\mathcal{U}) , that is, $\mathcal{M} \leq \dot{B}$ and $u(x,y) \geq \alpha$ for all $x,y \in B$ and for some $\alpha \in L_0$, which implies that,

$$\mathcal{F}_L f(\mathcal{M}) \le \mathcal{F}_L f(\dot{B}) = (\dot{f(B)})$$

for the set $f(B) \subseteq Y$. Let v be a surrounding in (Y, \mathcal{V}) , then from being f is $(\mathcal{U}, \mathcal{V})$ -continuous, we have

$$\alpha \leq \mathcal{V}(v) \leq \mathcal{U}(v \circ (f \times f)) = \mathcal{F}_L(f \times f)(\mathcal{U})(v)$$

for some $\alpha \in L_0$, and $v = v^{-1}$ implies that $(v \circ (f \times f))^{-1} = v^{-1} \circ (f \times f) = v \circ (f \times f)$, that is, $u = v \circ (f \times f)$ is a surrounding in (X, \mathcal{U}) , which means that

$$\alpha \le u(x,y) = (v \circ (f \times f))(x,y) = v(f(x),f(y))$$

for all $f(x), f(y) \in f(B)$ and for some $\alpha \in L_0$. Hence, $\mathcal{F}_L f(\mathcal{M}) \leq (f(B))$ for the set $f(B) \subseteq Y$ and f(B) is small of order every surrounding in (Y, \mathcal{V}) , and thus $\mathcal{F}_L f(\mathcal{M})$ is a \mathcal{V} -cauchy filter. \square

4. The completion of *L*-uniform spaces

Firstly, we give these general notes.

If (Y, σ) is an L-topological space and X is a non-empty subset of Y, then the initial L-topology of σ , with respect to the inclusion mapping $i: X \hookrightarrow Y$, is the L-topology $i^{-1}(\sigma) = \{i^{-1}(\lambda) \mid \lambda \in \sigma\}$ on X and is denoted by σ_X .

An L-topological space (Y, σ) is called an *extension* of the L-topological space (X, τ) if $X \subseteq Y$, $\tau = \sigma_X$ and X is σ -dense in Y.

The extension (Y, σ) of (X, τ) is called *reduced* if for any $x \neq y$ in Y and $x \in Y \setminus X$, we have $\mathcal{N}_{\sigma}(x) \neq \mathcal{N}_{\sigma}(y)$, where $\mathcal{N}_{\sigma}(x)$ denotes the L-neighborhood filter of (Y, σ) at a point $x \in Y$.

In [2, 3, 7, 8], we have introduced and studied the notion of GT_i -spaces for all $i = 0, 1, 2, 3, 3\frac{1}{2}, 4$.

 GT_i -spaces. An L-topological space (X, τ) is called [2, 3, 7]:

- (1) GT_0 if for all $x, y \in X$ with $x \neq y$ we have $\dot{x} \nleq \mathcal{N}(y)$ or $\dot{y} \nleq \mathcal{N}(x)$.
- (2) GT_1 if for all $x, y \in X$ with $x \neq y$ we have $\dot{x} \nleq \mathcal{N}(y)$ and $\dot{y} \nleq \mathcal{N}(x)$.
- (3) GT_2 if for all $x, y \in X$ with $x \neq y$, we have $\mathcal{M} \nleq \mathcal{N}(x)$ or $\mathcal{M} \nleq \mathcal{N}(y)$ for all L-filters \mathcal{M} on X.
- (4) regular if for all $x \notin F$ and $F = \operatorname{cl}_{\tau} F$, we have $\mathcal{N}(x) \wedge \mathcal{N}(F)$ does not exist.
- (5) GT_3 if it is GT_1 and regular.
- (6) completely regular if for all $x \notin F \in \tau'$, there exists a L- continuous mapping $f: (X, \tau) \to (I_L, \Im)$ such that $f(x) = \overline{1}$ and $f(y) = \overline{0}$ for all $y \in F$.
- (7) $GT_{3\frac{1}{2}}$ (or *L-Tychonoff*) if it is GT_1 and completely regular.

Denote by GT_i -space the L- topological space which is GT_i , $i = 0, 1, 2, 3, 3\frac{1}{2}$.

Proposition 4.1 [2, 3, 7] Every GT_i -space is GT_{i-1} -space for each i = 1, 2, 3, and every $GT_{3\frac{1}{2}}$ -space is a GT_3 -space.

Lemma 4.1 If the extension (Y, σ) of (X, τ) is a GT_0 -space, then (Y, σ) is a reduced extension of (X, τ) .

Proof. Clear. \square

Lemma 4.2 For a GT_0 -space (X, τ) , the reduced extension (Y, σ) also is a GT_0 -space.

Proof. For all $x \neq y$ in $Y \setminus X$, we have $\mathcal{N}_{\sigma}(x) \neq \mathcal{N}_{\sigma}(y)$. Also for all $x \neq y$ in X, we have $\mathcal{N}_{\tau}(x) \neq \mathcal{N}_{\tau}(y)$. Hence, for all $x \neq y$ in Y we get that $\mathcal{N}_{\sigma}(x) \neq \mathcal{N}_{\sigma}(y)$, and thus (Y, σ) is a GT_0 -space. \square

Remark 4.1 Let (X, τ) be an L-topological space and $X \subseteq Y$. If we succeed in defining an L-topology σ on Y such that (Y, σ) is an extension of (X, τ) , then X is a σ -dense in Y implies that every σ -neighborhood of each $y \in Y$ intersects X, hence the infimum $\mathcal{N}_{\sigma}(y) \wedge \dot{X}$ exists where, for all $f, g \in L^X$, $\operatorname{int}_{\sigma} f(y) = f(x)$ for some $x \in X$ implies $\operatorname{int}_{\sigma} f(y) \wedge \bigwedge_{x \in X} g(x) \leq f(x)$ for some $x \in X$ and also $\operatorname{int}_{\sigma} f(y) \wedge \bigwedge_{x \in X} g(x) \leq g(x)$ for all $x \in X$, and thus $\operatorname{int}_{\sigma} f(y) \wedge \bigwedge_{x \in X} g(x) \leq \sup(f \wedge g)$ for all $f, g \in L^X$.

Definition 4.1 Let (X, τ) , (Y, σ) be two L- topological spaces and (Y, σ) an extension of (X, τ) . Then the L-filter $\mathcal{N}_{\sigma}(x) \wedge \dot{X}$ on X, denoted by \mathcal{M}_{x} , will be called a trace filter at $x \in Y$ into Y and $\mathcal{M}_{x} = \mathcal{N}_{\tau}(x)$ whenever $x \in X$. Clearly, $\mathcal{M}_{x} \xrightarrow{\sigma} x$.

Definition 4.2 Let (X, τ) and (Y, σ) be two L-topological spaces, (X', τ^*) an extension of (X, τ) and let $f: X \to Y$ be a (τ, σ) -continuous mapping. Then the restriction mapping $g|_X$ on X of the (τ^*, σ) -continuous mapping $g: X' \to Y$, which coincides with f, is called a *continuous extension* of f into X'.

Remark 4.2 Let (X, τ) and (Y, σ) be two L-topological spaces, (X', τ^*) an extension of (X, τ) , $f: X \to Y$ a mapping and $\mathcal{M}_x = \mathcal{N}_{\tau^*}(x) \wedge \dot{X}$ a trace filter on X at $x \in X'$. For the existence of a continuous extension $g: X' \to Y$, it is necessary that f is (τ, σ) -continuous and $\mathcal{F}_L f(\mathcal{M}_x) \xrightarrow{\sigma} x$ for a trace filter \mathcal{M}_x at $x \in X'$. If (Y, σ) is a regular space, then these conditions also are sufficient. It is clear that $\mathcal{M}_x \xrightarrow{\tau^*} x$.

Lemma 4.3 With the notations in Remark 4.2, let $g_1: X' \to Y$ and $g_2: X' \to Y$ be (τ^*, σ) -continuous, (Y, σ) is a GT_2 -space and $g_1|_{X} = g_2|_{X} = f$. Then $g_1 = g_2$.

Proof. Let $x \in X'$ be arbitrary and $\mathcal{M}_x \xrightarrow{\tau^*} x$. From Lemma 2.1, we get that $\mathcal{F}_L g_1(\mathcal{M}_x) \xrightarrow{\sigma} g_1(x)$ and $\mathcal{F}_L g_2(\mathcal{M}_x) \xrightarrow{\sigma} g_2(x)$, and also we have $\mathcal{F}_L g_1(\mathcal{M}_x) = \mathcal{F}_L g_2(\mathcal{M}_x) = \mathcal{F}_L f(\mathcal{M}_x)$ an L-filter on Y, and since (Y, σ) is a GT_2 -space, then $g_1(x) = g_2(x)$. Thus $g_1 = g_2$. \square

Lemma 4.4 An extension (Y, σ) of (X, τ) is reduced if and only if $\mathcal{M}_x \neq \mathcal{M}_y$ for all $x \neq y$ in Y and $x \in Y \setminus X$.

Proof. The proof comes from that

$$\mathcal{M}_x = \mathcal{N}_{\sigma}(x) \wedge \dot{X} \neq \mathcal{N}_{\sigma}(y) \wedge \dot{X} = \mathcal{M}_y$$

if and only if $\mathcal{N}_{\sigma}(x) \neq \mathcal{N}_{\sigma}(y)$. \square

Definition 4.3 An *L*-uniform space (Y, \mathcal{U}^*) is called an *extension* of the *L*-uniform space (X, \mathcal{U}) if $X \subseteq Y$, $\mathcal{U} = \mathcal{U}_X^*$ and X is a $\tau_{\mathcal{U}^*}$ -dense in Y.

Definition 4.4 An *L*-uniform space (Y, \mathcal{U}^*) is called a *reduced extension* of the *L*-uniform space (X, \mathcal{U}) if $(Y, \tau_{\mathcal{U}^*})$ is a reduced extension of $(X, \tau_{\mathcal{U}})$.

An L-uniform structure \mathcal{U} on a set X is called *separated* [5] if for all $x, y \in X$ with $x \neq y$ there is $u \in L^{X \times X}$ such that $\mathcal{U}(u) = 1$ and u(x, y) = 0. The space (X, \mathcal{U}) is called *separated L-uniform space*.

Proposition 4.2 [5] Let X be a set, \mathcal{U} an L-uniform structure on X and $\tau_{\mathcal{U}}$ the L-topology associated with \mathcal{U} . Then

 (X,\mathcal{U}) is separated if and only if $(X,\tau_{\mathcal{U}})$ is GT_0 -space.

Lemma 4.5 If (X, \mathcal{U}) is a separated L-uniform space and (Y, \mathcal{U}^*) is a reduced extension of (X, \mathcal{U}) , then (Y, \mathcal{U}^*) is separated as well.

Proof. From Proposition 4.2, we get that $(X, \tau_{\mathcal{U}})$ is a GT_0 -space and since $(Y, \tau_{\mathcal{U}^*})$ is a reduced extension of $(X, \tau_{\mathcal{U}})$, then by Lemma 4.2 we have $(Y, \tau_{\mathcal{U}^*})$ is a GT_0 -space. Again by Proposition 4.2, we get that (Y, \mathcal{U}^*) is separated. \square

Now, we give this definition.

Definition 4.5 An L-uniform space (X, \mathcal{U}) is called *complete* if every \mathcal{U} -cauchy filter \mathcal{M} on X is convergent.

Definition 4.6 An *L*-uniform space (Y, \mathcal{U}^*) is called a *completion* of the *L*-uniform space (X, \mathcal{U}) if it is a reduced extension of (X, \mathcal{U}) and \mathcal{U}^* is complete.

Lemma 4.6 The completion of a separated L-uniform space is separated as well.

Proof. The proof comes from Lemma 4.5. \Box

5. The completion of L-topological groups

In this section, we introduce the main notion of this paper, that the completion of L-topological groups using the completion of L-uniform spaces.

L-topological groups. Let G be a multiplicative group. We denote, as usual, the identity element of G by e and the inverse of an element a of G by a^{-1} .

Definition 5.1 [1, 6] Let G be a group and τ an L-topology on G. Then (G, τ) will be called an L-topological group if the mappings

$$\pi: (G \times G, \tau \times \tau) \to (G, \tau)$$
 defined by $\pi(a, b) = ab$ for all $a, b \in G$

and

$$i:(G,\tau)\to(G,\tau)$$
 defined by $i(a)=a^{-1}$ for all $a\in G$

are L-continuous. π and i are the binary operation and the unary operation of the inverse on G, respectively.

For all $\lambda \in L^G$, denote by λ^i the L-set $\lambda \circ i$ in G, that is, $\lambda^i(x) = \lambda(x^{-1})$ for all $x \in G$. We also denote $\mathcal{F}_L \pi(\mathcal{L} \times \mathcal{M})$ by $\mathcal{L} \mathcal{M}$ and $\mathcal{F}_L i(\mathcal{M})$ by \mathcal{M}^i , which means that $\mathcal{L} \mathcal{M}(\lambda) = \mathcal{L} \times \mathcal{M}(\lambda \circ \pi)$ and $\mathcal{M}^i(\lambda) = \mathcal{M}(\lambda^i)$ for all L-filters \mathcal{L}, \mathcal{M} on G and all L-sets $\lambda \in L^G$.

A surrounding $u \in L^{X \times X}$ is called *left (right) invariant* provided

$$u(ax, ay) = u(x, y)$$
 $(u(xa, ya) = u(x, y))$ for all $a, x, y \in X$.

 \mathcal{U} is called a *left (right) invariant L*-uniform structure if \mathcal{U} has a valued L-filter base consists of left (right) invariant surroundings [8].

Proposition 5.1 [8] Let (G, τ) be an L-topological group. Then there exist on G a unique left invariant L-uniform structure \mathcal{U}^l and a unique right invariant L-uniform structure \mathcal{U}^r compatible with τ , constructed using the family $(\alpha \operatorname{-pr} \mathcal{N}(e))_{\alpha \in L_0}$ of all filters $\alpha \operatorname{-pr} \mathcal{N}(e)$, where $\mathcal{N}(e)$ is the L-neighborhood filter at the identity element e of (G, τ) , as follows:

$$\mathcal{U}^{l}(u) = \bigvee_{v \in \mathcal{U}^{l}_{\alpha}, v \leq u} \alpha \qquad and \qquad \mathcal{U}^{r}(u) = \bigvee_{v \in \mathcal{U}^{r}_{\alpha}, v \leq u} \alpha, \tag{5.1}$$

where

$$\mathcal{U}_{\alpha}^{l} = \alpha \operatorname{-pr} \mathcal{U}^{l}$$
 and $\mathcal{U}_{\alpha}^{r} = \alpha \operatorname{-pr} \mathcal{U}^{r}$ (5.2)

are defined by

$$\mathcal{U}_{\alpha}^{l} = \{ u \in L^{G \times G} \mid u(x, y) = (\lambda \wedge \lambda^{i})(x^{-1}y) \text{ for some } \lambda \in \alpha \text{-pr } \mathcal{N}(e) \}$$
 (5.3)

and

$$\mathcal{U}_{\alpha}^{r} = \{ u \in L^{G \times G} \mid u(x, y) = (\lambda \wedge \lambda^{i})(xy^{-1}) \text{ for some } \lambda \in \alpha \text{-pr } \mathcal{N}(e) \}$$
 (5.4)

We should notice that we shall fix the notations \mathcal{U}^l , \mathcal{U}^r , \mathcal{U}^l_{α} and \mathcal{U}^r_{α} along the paper to be these defined above.

Definition 5.2 $\mathcal{U}^b = \mathcal{U}^l \vee \mathcal{U}^r$ is called the *bilateral* L-uniform structure of the L-topological group (G, τ) , where \mathcal{U}^l and \mathcal{U}^r are defined in (5.1) - (5.4).

Remark 5.1 \mathcal{M} is a \mathcal{U}^b -cauchy filter if it is \mathcal{U}^l -cauchy filter and \mathcal{U}^r -cauchy filter simultaneously.

Remark 5.2 (cf. [8]) For the *L*-topological group (G, τ) , the elements of \mathcal{U}_{α}^{l} (\mathcal{U}_{α}^{r}) are left (right) invariant surroundings. Moreover, $(\mathcal{U}_{\alpha}^{l})_{\alpha \in L_{0}}$ ($(\mathcal{U}_{\alpha}^{r})_{\alpha \in L_{0}}$) is a valued *L*-filter base for the left (right) invariant *L*-uniform structure \mathcal{U}^{l} (\mathcal{U}^{r}) defined by (5.1) - (5.4), respectively.

Now, suppose that (G, τ) has a countable L-neighborhood filter $\mathcal{N}(e)$ at the identity e. Since any L-topological group, from Proposition 5.1, is uniformizable, then the left and the right invariant L-uniform structures \mathcal{U}^l and \mathcal{U}^r , constructed also in Proposition 5.1, has, from Remark 5.2, a countable L-filter base $\mathcal{U}^l_{\frac{1}{2}}$ and $\mathcal{U}^r_{\frac{1}{2}}$, respectively, $n \in \mathbb{N}$.

We may recall that if (G, τ) is an L-topological group and A is a subgroup of G, then the L-topological subspace (A, τ_A) is called an L-topological subgroup [6].

Proposition 5.2 Let (A, τ_A) be an L-topological subgroup of an L-topological group (G, τ) , and further \mathcal{U} be a complete L-uniform structure on G compatible with τ and \mathcal{U}_A is the L-uniform structure on A compatible with τ_A . Then

- (d1) If \mathcal{L} and \mathcal{M} are \mathcal{U}_A -cauchy filters, then $\mathcal{L}\mathcal{M}$ is a \mathcal{U}_A -cauchy filter as well,
- (d2) If \mathcal{M} is a \mathcal{U}_A -cauchy filter, then \mathcal{M}^i is a \mathcal{U}_A -cauchy filter as well.

Proof. By Lemma 3.1, \mathcal{L} and \mathcal{M} are both \mathcal{U} -cauchy filters too, thus \mathcal{U} is complete implies $\mathcal{L} \xrightarrow{\tau} x$ and $\mathcal{M} \xrightarrow{\tau} y$ for some $x, y \in G$, that is, $\mathcal{L} \leq \mathcal{N}(x)$ and $\mathcal{M} \leq \mathcal{N}(y)$. Now, for each $\xi \in L^G$ we have

$$\mathcal{L}\mathcal{M}(\xi) = \mathcal{F}_{L}\pi(\mathcal{L} \times \mathcal{M})(\xi)$$

$$= \mathcal{L} \times \mathcal{M}(\xi \circ \pi)$$

$$= \bigvee_{\lambda \times \mu \leq \xi \circ \pi} \mathcal{L}(\lambda) \wedge \mathcal{M}(\mu)$$

$$\geq \bigvee_{\lambda \times \mu \leq \xi \circ \pi} \mathcal{N}(x)(\lambda) \wedge \mathcal{N}(y)(\mu)$$

$$= \bigvee_{\lambda \times \mu \leq \xi \circ \pi} \operatorname{int}_{\tau} \lambda(x) \wedge \operatorname{int}_{\tau} \mu(y)$$

$$\geq \operatorname{int}_{\tau} \xi(xy)$$

$$= \mathcal{N}(xy)(\xi).$$

That is, $\mathcal{LM} \xrightarrow{\tau} xy$ and hence, \mathcal{LM} is a \mathcal{U} -cauchy filter and at the same time a \mathcal{U}_A -cauchy filter from Proposition 3.1 and Lemma 3.1.

Similarly, if \mathcal{M} is a \mathcal{U}_A -cauchy filter, and thus a \mathcal{U} -cauchy filter, then $\mathcal{M} \xrightarrow{\tau} x$, and hence by Lemma 2.1, $\mathcal{M}^i(\lambda) = \mathcal{F}_L i(\mathcal{M}) \xrightarrow{\tau} i(x) = x^{-1}$. This means that \mathcal{M}^i is a \mathcal{U} -cauchy filter and also a \mathcal{U}_A -cauchy filter. \square

Definition 5.3 Let us call an *L*-uniform structure \mathcal{U} of an *L*-topological group (G, τ) admissible if $\tau_{\mathcal{U}} = \tau$ and the conditions (d1) and (d2) in Proposition 5.2 are fulfilled.

Definition 5.4 An L-topological group (G, τ) is called *complete* if its bilateral L-uniform structure \mathcal{U}^b is complete. (G, τ) is called *left complete* (right complete) if it is complete and its left (right) L-uniform structure \mathcal{U}^l (\mathcal{U}^r) is admissible.

Lemma 5.1 The inverse mapping $i:(G,\tau)\to (G,\tau)$, $i(x)=x^{-1}$, of any L-topological group (G,τ) is $(\mathcal{U}^l,\mathcal{U}^r)$ -continuous and $(\mathcal{U}^r,\mathcal{U}^l)$ -continuous, and moreover $\mathcal{U}^r=\mathcal{F}_L(i\times i)(\mathcal{U}^l)$, $\mathcal{U}^l=\mathcal{F}_L(i\times i)(\mathcal{U}^r)$.

Proof. For $u \in \mathcal{U}_{\alpha}^{l}$ and for some $\lambda \in \alpha$ - $\operatorname{pr} \mathcal{N}(e)$, we have

$$(u \circ (i \times i))(x,y) = u(x^{-1},y^{-1}) = (\lambda \wedge \lambda^i)(xy^{-1}) = w(x,y)$$

for some $w \in \mathcal{U}_{\alpha}^{r}$. Since $\mathcal{F}_{L}(i \times i)(\mathcal{U}^{l})(u) = \mathcal{U}^{l}(u \circ (i \times i))$ for all $u \in L^{X \times X}$, then $\mathcal{F}_{L}(i \times i)(\mathcal{U}^{l})(u) = \mathcal{U}^{r}(u)$ for all $u \in L^{X \times X}$, and hence i is a $(\mathcal{U}^{l}, \mathcal{U}^{r})$ -continuous. Similarly, we get that $\mathcal{F}_{L}(i \times i)(\mathcal{U}^{r}) = \mathcal{U}^{l}$, and thus i is a $(\mathcal{U}^{r}, \mathcal{U}^{l})$ -continuous. \square

Proposition 5.3 If \mathcal{M} is a \mathcal{U}^l -cauchy filter in an L-topological group (G, τ) , then \mathcal{M}^i is a \mathcal{U}^r -cauchy filter and the converse.

Proof. Since, from Lemma 5.1, the mapping $i:(G,\mathcal{U}^l)\to (G,\mathcal{U}^r)$ is $(\mathcal{U}^l,\mathcal{U}^r)$ -continuous, then \mathcal{M} is a \mathcal{U}^l -cauchy filter implies, from Lemma 3.2, that $\mathcal{F}_L(i)(\mathcal{M})=\mathcal{M}^i$ is a \mathcal{U}^r -cauchy filter. Similarly, the converse follows. \square

Proposition 5.4 [15] Let (X, \mathcal{U}) and (Y, \mathcal{V}) be two L-uniform spaces and $f: X \to Y$ a mapping. Then the mapping $f: (X, \tau_{\mathcal{U}}) \to (Y, \tau_{\mathcal{V}})$ is L-continuous if and only if f is $(\mathcal{U}, \mathcal{V})$ -continuous.

Here, we give this result.

Lemma 5.2 If \mathcal{U} and \mathcal{V} are two L-uniform structures on an L-topological group (G, τ) and both \mathcal{L} and \mathcal{M} are \mathcal{U} - $(\mathcal{V}$ -)cauchy filters on G, then $\mathcal{L} \times \mathcal{M}$ is a $\mathcal{U} \times \mathcal{U}$ - $(\mathcal{V} \times \mathcal{V}$ -)cauchy filter on $G \times G$.

Proof. From Proposition 2.2, $\mathcal{L} \times \mathcal{M}$ is an L-filter on $G \times G$. Let \mathcal{L} and \mathcal{M} be \mathcal{U} -cauchy filters on G, then there exist $A, B \subseteq G$ such that $\mathcal{L} \leq \dot{A}$ and $\mathcal{M} \leq \dot{B}$ and A, B are small of order every surrounding u in (G, \mathcal{U}) . Now,

$$(\mathcal{L} \times \mathcal{M})(u) = \bigvee_{\lambda \times \mu \le u} (\mathcal{L}(\lambda) \wedge \mathcal{M}(\mu))$$

$$\geq \bigvee_{\lambda \times \mu \le u} (\dot{A}(\lambda) \wedge \dot{B}(\mu))$$

$$= \bigvee_{\lambda \times \mu \le u} \bigwedge_{x \in A, y \in B} \lambda(x) \wedge \mu(y)$$

$$= \bigvee_{\lambda \times \mu \le u} \bigwedge_{x \in A, y \in B} \lambda \times \mu(x, y)$$

$$= u(A, B)$$

$$= (A \times B)(u)$$

for all $u \in L^{G \times G}$. That is, there exists $A \times B \subseteq G \times G$ such that $\mathcal{L} \times \mathcal{M} \leq (A \times B)$.

Let $\psi: (G \times G) \times (G \times G) \to L$ be a mapping and u a surrounding in (G, \mathcal{U}) , then from Proposition 5.4, π is $(\mathcal{U} \times \mathcal{U}, \mathcal{U})$ -continuous, and then

$$\alpha \leq \mathcal{U}(u) \leq \mathcal{F}_L(\pi \times \pi)(\mathcal{U} \times \mathcal{U})(u) = \mathcal{U} \times \mathcal{U}(u \circ (\pi \times \pi)) = \mathcal{U} \times \mathcal{U}(\psi)$$

and also, $u = u^{-1}$ implies that

$$\psi^{-1} = (u \circ (\pi \times \pi))^{-1} = u^{-1} \circ (\pi \times \pi) = u \circ (\pi \times \pi) = \psi,$$

that is, ψ is a surrounding in $(G \times G, \mathcal{U} \times \mathcal{U})$, and for any surrounding ψ in $(G \times G, \mathcal{U} \times \mathcal{U})$, there exists a surrounding u in (G, \mathcal{U}) such that $\psi = u \circ (\pi \times \pi)$.

Now, $\alpha \leq u(x,y)$ for all $x,y \in A$ and $\beta \leq u(r,s)$ for all $r,s \in B$ and for some $\alpha, \beta \in L_0$ imply that $\psi((x,r),(y,s)) = (u \circ (\pi \times \pi))((x,r),(y,s)) = u(xr,ys)$, and by choosing (x,y) = (e,e) or (r,s) = (e,e), we get that $u(xr,ys) \geq \gamma$ for some $\gamma \in L_0$, that is, for all $(x,r),(y,s) \in A \times B$, we have $\psi((x,r),(y,s)) \geq \gamma$ for some $\gamma \in L_0$, which means that $A \times B$ is small of order every surrounding in $(G \times G, \mathcal{U} \times \mathcal{U})$, and therefore $\mathcal{L} \times \mathcal{M}$ is a $\mathcal{U} \times \mathcal{U}$ -cauchy filter. \square

Proposition 5.5 If \mathcal{U}^l and \mathcal{U}^r are the left and the right L-uniform structures of an L-topological group (G,τ) and both of \mathcal{L} and \mathcal{M} are \mathcal{U}^l - $(\mathcal{U}^r$ -)cauchy filters, then $\mathcal{L}\mathcal{M}$ has the same property.

Proof. From Lemma 5.2 and Lemma 3.2, we have $\mathcal{LM} = \mathcal{F}_L \pi(\mathcal{L} \times \mathcal{M})$ is a \mathcal{U}^l - $(\mathcal{U}^r$ -)cauchy filter. \square

Accordingly, the property of being admissible depends for \mathcal{U}^l and \mathcal{U}^r on the fact whether condition (d2) of Proposition 5.2 is fulfilled.

Proposition 5.6 The following statements are equivalent in any L-topological group (G, τ) .

- (1) Together with \mathcal{M} , \mathcal{M}^i is a \mathcal{U}^l -cauchy filter,
- (2) Together with \mathcal{M} , \mathcal{M}^i is a \mathcal{U}^r -cauchy filter,
- (3) Every \mathcal{U}^l -cauchy filter is a \mathcal{U}^r -cauchy filter,
- (4) Every \mathcal{U}^r -cauchy filter is a \mathcal{U}^l -cauchy filter,
- (5) \mathcal{U}^l is admissible,
- (6) \mathcal{U}^r is admissible.

Proof. (1) \iff (5) and (2) \iff (6) come from Proposition 5.5.

 $(1) \Longleftrightarrow (2)$ follows from Proposition 5.3 and that $(\mathcal{M}^i)^i = \mathcal{M}$.

From (1), since \mathcal{M} is a \mathcal{U}^l -cauchy filter implies that \mathcal{M}^i is a \mathcal{U}^l -cauchy filter, and thus \mathcal{M} is a \mathcal{U}^r -cauchy filter according to Proposition 5.3, then (1) \Longrightarrow (3); On the other hand, if \mathcal{M} is a \mathcal{U}^l -cauchy filter, then it is a \mathcal{U}^r -cauchy filter and thus \mathcal{M}^i is a \mathcal{U}^l -cauchy filter. That is, (1) \iff (3).

 $(2) \Longleftrightarrow (4)$ is obtained similarly. \square

Proposition 5.7 If the left L-uniform structure \mathcal{U}^l or the right L-uniform structure \mathcal{U}^r of an L-topological group (G,τ) is complete, then the other one is complete as well and both are admissible.

Proof. If \mathcal{U}^l is complete and \mathcal{M} is a \mathcal{U}^r -cauchy filter, then from Proposition 5.3, \mathcal{M}^i is a \mathcal{U}^l -cauchy filter, thus $\mathcal{M}^i \xrightarrow{\tau} x$ in G and then $\mathcal{M} \xrightarrow{\tau} x^{-1}$. Hence, \mathcal{U}^r is complete, and the completeness of \mathcal{U}^l follows by the same way from the completeness of \mathcal{U}^r .

At last, \mathcal{M} is a \mathcal{U}^l -cauchy filter implies that \mathcal{M} converges to $x \in G$, that is, $\mathcal{M} \leq \mathcal{U}^l[\dot{x}]$, and then $\mathcal{M}^i \leq \mathcal{U}^l[\dot{x}^{-1}]$ and from Proposition 3.1, \mathcal{M}^i is a \mathcal{U}^l -cauchy filter. Proposition 5.6 implies that both \mathcal{U}^l and \mathcal{U}^r are admissible. \square

Lemma 5.3 If \mathcal{U}^b is the bilateral L-uniform structure of an L-topological group (G, τ) , then i is $(\mathcal{U}^b, \mathcal{U}^b)$ -continuous.

Proof. From that $\mathcal{U}^l \leq \mathcal{U}^b$ and $\mathcal{U}^r \leq \mathcal{U}^b$, we get that $\mathcal{F}_L(i \times i)\mathcal{U}^l \leq \mathcal{U}^b$ and $\mathcal{F}_L(i \times i)\mathcal{U}^r \leq \mathcal{U}^b$, and thus

$$\mathcal{F}_L(i \times i)\mathcal{U}^b = \mathcal{F}_L(i \times i)\mathcal{U}^l \vee \mathcal{F}_L(i \times i)\mathcal{U}^r \leq \mathcal{U}^b.$$

Hence, i is $(\mathcal{U}^b, \mathcal{U}^b)$ -continuous. \square

L-metric spaces. We use here the notion of L-metric space defined by means of the notion of L-real numbers in [12]. By an L-real number is meant [12] a convex, normal, compactly supported and upper semi-continuous L-subset of the set of all real numbers \mathbf{R} . The set of all L-real numbers is denoted by \mathbf{R}_L . \mathbf{R} is canonically embedded into \mathbf{R}_L , identifying each real number a with the crisp L-number a^{\sim} defined by $a^{\sim}(\xi) = 1$ if $\xi = a$ and 0 otherwise. The set of all positive L-real numbers is defined and denoted by: $\mathbf{R}_L^* = \{x \in \mathbf{R}_L \mid x(0) = 1 \text{ and } 0^{\sim} \leq x\}$ [12].

A mapping $\varrho: X \times X \longrightarrow \mathbf{R}_L^*$ is called an L-metric [12] on X if the following conditions are fulfilled:

- (1) $\rho(x,y) = 0^{\sim}$ if and only if x = y
- (2) $\rho(x, y) = \rho(y, x)$
- (3) $\varrho(x,y) \le \varrho(x,z) + \varrho(z,y)$.

If $\varrho: X \times X \longrightarrow \mathbf{R}_L^*$ satisfied the conditions (2) and (3) and the following condition:

$$(1)' \ \varrho(x,y) = 0^{\sim} \text{ if } x = y$$

then it is called an L-pseudo-metric on X.

A set X equipped with an L-pseudo-metric (L-metric) ϱ on X is called an L-pseudo-metric (L-metric) space.

To each L-pseudo-metric (L-metric) ϱ on a set X is generated canonically a stratified L-topology τ_{ϱ} on X which has $\{\varepsilon \circ \varrho_x \mid \varepsilon \in \mathcal{E}, x \in X\}$ as a base, where $\varrho_x : X \to \mathbf{R}_L^*$ is the mapping defined by $\varrho_x(y) = \varrho(x,y)$ and

$$\mathcal{E} = \{ \overline{\alpha} \wedge R^{\delta} |_{\mathbf{R}_{x}^{*}} \mid \delta > 0, \ \alpha \in L \} \cup \{ \overline{\alpha} \mid \alpha \in L \},$$

here $\overline{\alpha}$ has \mathbf{R}_L^* as domain.

An L-topological space (X, τ) is called *pseudo-metrizable* (*metrizable*) if there is an L-pseudo-metric (L-metric) ϱ on X inducing τ , that is, $\tau = \tau_{\varrho}$.

An L-pseudo-metric ϱ is called *left* (right) invariant if

$$\varrho(x,y) = \varrho(ax,ay)$$
 $(\varrho(x,y) = \varrho(xa,ya))$ for all $a,x,y \in X$.

An L-topological group (G, τ) is called *separated* if for the identity element e, we have $\bigwedge_{\lambda \in \alpha\text{-pr}\mathcal{N}(e)} \lambda(e) \geq \alpha$, and $\bigwedge_{\lambda \in \alpha\text{-pr}\mathcal{N}(e)} \lambda(x) < \alpha$ for all $x \in G$ with $x \neq e$ and for all $\alpha \in L_0$ [8].

Proposition 5.8 [9] Let (G, τ) be a (separated) L-topological group. Then the following statements are equivalent.

- (1) τ is pseudo-metrizable (metrizable);
- (2) e has a countable L-neighborhood filter $\mathcal{N}(e)$;
- (3) τ can be induced by a left invariant L-pseudo-metric (L-metric);
- (4) τ can be induced by a right invariant L-pseudo-metric (L-metric).

Definition 5.5 An L-uniform structure \mathcal{U} on a set X is called pseudo-metrizable (metrizable) if there exists a countable L-uniform base for \mathcal{U} (and \mathcal{U} is separated).

Proposition 5.9 [8] Let (G, τ) be an L-topological group. Then there exist on G a unique left invariant L-uniform structure \mathcal{U}^l and a unique right invariant L-uniform structure \mathcal{U}^r compatible with τ , constructed with (5.1) - (5.4).

Proposition 5.10 For any (separated) L-topological group (G, τ) , The L-uniform structures \mathcal{U}^l , \mathcal{U}^r and \mathcal{U}^b constructed in (5.1) - (5.4) are pseudo-metrizable (metrizable).

Proof. From Proposition 5.8, $\tau = \tau_{\varrho_1} = \tau_{\varrho_2}$ where ϱ_1 is a left, ϱ_2 is a right invariant L-pseudo-metric (L-metric) on G, and then \mathcal{U}_{ϱ_1} is left invariant and \mathcal{U}_{ϱ_2} is right invariant. From Proposition 5.9, \mathcal{U}^l and \mathcal{U}^r are unique, that is, $\mathcal{U}_{\varrho_1} = \mathcal{U}^l$, $\mathcal{U}_{\varrho_2} = \mathcal{U}^r$ and \mathcal{U}^l , \mathcal{U}^r are pseudo-metrizable (metrizable). Moreover, $\tau_{\mathcal{U}^b} = \tau_{\mathcal{U}^l \vee \mathcal{U}^r} = \tau_{\mathcal{U}^l} \vee \tau_{\mathcal{U}^r} = \tau$. Hence, \mathcal{U}^b is pseudo-metrizable (metrizable) as well. \square

Proposition 5.11 [4] Let (X, \mathcal{U}) be an L-uniform space, (A, \mathcal{U}_A) an L-uniform subspace of (X, \mathcal{U}) and $(\tau_{\mathcal{U}})_A$ the L-subtopology of the L-topology $\tau_{\mathcal{U}}$ associated with \mathcal{U} . Then the L-topology associated to \mathcal{U}_A coincides with $(\tau_{\mathcal{U}})_A$, that is, $\tau_{(\mathcal{U}_A)} = (\tau_{\mathcal{U}})_A$.

Lemma 5.4 Let (A, τ_A) be an L-topological subgroup of an L-topological subgroup (G, τ) , and \mathcal{U}^l , \mathcal{U}^r and \mathcal{U}^b the left, the right and the bilateral L-uniform structures of (G, τ) . Then the corresponding L-uniform structures of (A, τ_A) are $(\mathcal{U}^l)_A$, $(\mathcal{U}^r)_A$ and $(\mathcal{U}^b)_A$, respectively.

Proof. From Proposition 5.11, we have $\tau_{(\mathcal{U}^l)_A} = (\tau_{\mathcal{U}^l})_A = \tau_A$ and, together with \mathcal{U}^l , $(\mathcal{U}^l)_A$ is left invariant as well, and hence $(\mathcal{U}^l)_A$ is the left invariant L-uniform structure of (A, τ_A) . By the same $(\mathcal{U}^r)_A$ is the right invariant L-uniform structure of (A, τ_A) as well. Moreover,

$$\tau_{\mathcal{U}_A^b} = \tau_{(\mathcal{U}_A^l \vee \mathcal{U}_A^r)} = \tau_{\mathcal{U}_A^l} \vee \tau_{\mathcal{U}_A^r} = (\tau_{\mathcal{U}^l})_A \vee (\tau_{\mathcal{U}^r})_A = (\tau_{\mathcal{U}^b})_A = \tau_A. \ \Box$$

Here, we give the essential result in this section.

Definition 5.6 For a separated L-topological group (G, τ) , let us call (H, σ) a completion of (G, τ) if it is complete separated L-topological group and in which (G, τ) is a dense subgroup.

In the following we need this result.

Proposition 5.12 [8] Let (G, τ) be an L-topological group. Then the following statements are equivalent.

- (1) The L-topology τ is GT_0 .
- (2) The L-topology τ is GT_2 .
- (3) The L-topological group (G, τ) is separated.

Proposition 5.13 Let (G, τ) be a separated L-topological group, \mathcal{U} an admissible L-uniform structure on G, and (H, \mathcal{V}) the completion of (G, \mathcal{U}) . Then an operation π' : $H \times H \to H$ can be defined on H in a unique way so that H equipped with π' is a group, and $(H, \tau_{\mathcal{V}})$ is an L-topological group of which G is a subgroup.

Proof. Let $\sigma = \tau_{\mathcal{V}}$. If $\pi' : H \times H \to H$ is defined by $\pi'(y, z) = yz$ for all $y, z \in H$, then $\pi'|_{G \times G} = \pi$. Now, let \mathcal{L}_x and \mathcal{M}_y be two trace filters on H at x and y into H, respectively. Since $\mathcal{L}_x \xrightarrow{\sigma} x$ and $\mathcal{M}_y \xrightarrow{\sigma} y$, that is, $\mathcal{L}_x(\lambda) \geq \operatorname{int}_{\sigma} \lambda(x)$ and $\mathcal{M}_y(\mu) \geq \operatorname{int}_{\sigma} \mu(y)$, then

$$\mathcal{L}_{x}\mathcal{M}_{y}(\xi) = \mathcal{F}_{L}\pi'(\mathcal{L}_{x} \times \mathcal{M}_{y})(\xi)$$

$$= \mathcal{L}_{x} \times \mathcal{M}_{y}(\xi \circ \pi')$$

$$= \bigvee_{\lambda \times \mu \leq \xi \circ \pi'} \mathcal{L}_{x}(\lambda) \wedge \mathcal{M}_{y}(\mu)$$

$$\geq \bigvee_{\lambda \times \mu \leq \xi \circ \pi'} \operatorname{int}_{\sigma}\lambda(x) \wedge \operatorname{int}_{\sigma}\mu(y)$$

$$\geq \operatorname{int}_{\sigma}\xi(xy)$$

$$= \mathcal{N}_{\sigma}(xy)(\xi),$$

and then $\mathcal{L}_x \mathcal{M}_y \xrightarrow{\sigma} xy$. From that \mathcal{U} is separated and from Lemma 4.6 and Proposition 5.12, we get (H, σ) is a GT_2 -space, and therefore these properties, using Lemma 4.3

and Remark 4.2, define π' in a unique way as the only continuous extension of π into $H \times H$. Also, if $i' : H \to H$ is defined by $i'(y) = y^{-1}$ for all $y \in H$, then $i'|_G = i$ and $\mathcal{F}_L i'(\mathcal{L}_x) = \mathcal{L}_x^{i'} \xrightarrow{\sigma} x^{-1}$ for any trace filter \mathcal{L}_x on H, and i' is (σ, σ) -continuous, that is, as in before, i' is a continuous extension of i defined in a unique manner.

Hence, π' is $(\sigma \times \sigma, \sigma)$ -continuous and i' is (σ, σ) -continuous imply that (H, σ) is an L-topological group in which (G, τ) is an L-topological subgroup. \square

Proposition 5.14 Under the hypothesis of Proposition 5.13, if the left, the right or the bilateral L-uniform structure of $(H, \tau_{\mathcal{U}^*})$ is \mathcal{U}^{*l} , \mathcal{U}^{*r} , or \mathcal{U}^{*b} respectively, then the corresponding L-uniform structures of (G, τ) are $(\mathcal{U}^{*l})_G$, $(\mathcal{U}^{*r})_G$, or $(\mathcal{U}^{*b})_G$.

Proof. It is a consequence of Lemma 5.4. \square

Proposition 5.15 Let (G, τ) be a separated L-topological group, \mathcal{U}^b its bilateral L-uniform structure, and $(H, \sigma = \tau_{\mathcal{V}})$ the L-topological group constructed in Proposition 5.13 with the choice $\mathcal{V} = \mathcal{V}^b$. Then (H, σ) is a completion of (G, τ) .

Proof. If $\mathcal{U} = \mathcal{U}^b$, then Proposition 5.13 can be applied and \mathcal{U}^b is admissible where both of \mathcal{U}^l and \mathcal{U}^r are admissible. Also, \mathcal{V} is a complete separated L-uniform structure such that $\sigma = \tau_{\mathcal{V}}$, G is σ -dense in H and $(\mathcal{V})_G = \mathcal{U}^b$. On the other hand, by Proposition 5.14, for the bilateral L-uniform structure \mathcal{V}^b of the L-topological group (H, σ) we have $\sigma = \tau_{(\mathcal{V}^b)}$ and $(\mathcal{V}^b)_G = \mathcal{U}^b$. Therefore, the bilateral L-uniform structure \mathcal{V}^b of (H, σ) is complete and (H, σ) is a completion of (G, τ) . \square

References

- [1] T. M. G. Ahsanullah; On fuzzy neighborhood groups, J. Math. Anal. Appl. 119 (1788) 237
 251.
- [2] F. Bayoumi, I. Ibedou; T_i -spaces, I, The Journal of The Egyptian Mathematical Society 9 (1902) 168 178.
- [3] F. Bayoumi, I. Ibedou; T_i -spaces, II, The Journal of The Egyptian Mathematical Society 9 (1902) 191 214.
- [4] F. Bayoumi; On initial and final L-uniform structures, Fuzzy Sets and Systems 123 (1903) 88 317.
- [5] F. Bayoumi; I. Ibedou; The relation between the GT_i -spaces and fuzzy proximity spaces, G-compact spaces, fuzzy uniform spaces, The Journal of Chaos, Solitons and Fractals 19 (1904) 855 866.
- [6] F. Bayoumi; On initial and final L-topological groups, Fuzzy Sets and Systems 146 (1905) 43 - 54.
- [7] F. Bayoumi, I. Ibedou; $GT_{3\frac{1}{2}}$ -spaces, I, The Journal of the Egyptian Mathematical Society, Accepted for publication November 1, 1905.

- [8] F. Bayoumi, I. Ibedou; The uniformizability of L-topological groups, submitted.
- [9] F. Bayoumi, I. Ibedou; The metrizability of L-topological groups, submitted.
- [10] C. H. Chang; Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1768) 172 170.
- [11] P. Eklund, W. Gähler; Fuzzy filter functors and convergence, in: S. E. Rodabaugh, E. P. Klement, U.Höhle; Applications of Category Theory to Fuzzy Subsets, Kluwer Academic Publishers, (1992), pp 109 - 136.
- [12] S. Gähler, W. Gähler; Fuzzy real numbers, Fuzzy Sets and Systems 66 (1784) 127 148.
- [13] W. Gähler; The general fuzzy filter approach to fuzzy topology, I, Fuzzy Sets and Systems 76 (1785) 195 224.
- [14] W. Gähler; The general fuzzy filter approach to fuzzy topology, II, Fuzzy Sets and Systems 76 (1785) 225-246.
- [15] W. Gähler, F. Bayoumi, A. Kandil, A. Nouh; The theory of global fuzzy neighborhood structures, III, Fuzzy uniform structures, Fuzzy Sets and Systems 88 (1788) 165 178.
- [16] J. A. Goguen; L-fuzzy sets, J. Math. Anal. Appl. 17 (1767) 135 164.
- [17] R. Lowen; Convergence in fuzzy topological spaces, General Topol. Appl. 9 (1778) 137 150.
- [18] S. E. Rodabaugh, E. P. Klement, U.Höhle; Applications of Category Theory to Fuzzy Subsets, Kluwer Academic Publishers, (1992), pp 109 136.
- [19] L. A. Zadeh; Fuzzy sets, Information and Control 8 (1765) 338 353.