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Abstract

The target in this paper, is to extend an L-topological group to a complete L-topological
group, and so giving the notion of the completion of an L-topological group. In the way, we have
introduced the notion of the completion of an L-uniform space.
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1. Introduction

In this paper, we gave new notions of L-filter, L-uniform space and L-topological
group. We defined, in an L-uniform space (X,U), a U-cauchy filter and have shown when
(X,U) to be a complete L-uniform space, and also how an L-topological group (G, 7) to
be complete. Finally, the completion of an L-uniform space and the completion of an
L-topological group are investigated.

In Section 2, we recall some results of L-filters and L-neighborhood filters defined by
Gahler in [11, 13, 14]. Also, we have defined the product of two L-sets and the product of
two L-filters.

In Section 3, we have defined in an L-uniform space (X,U), a new notion of L-filter
called U-cauchy filter. We showed that any convergent L-filter is a /-cauchy filter and the
converse holds in the complete L-uniform spaces.

Section 4 is devoted to show how to extend an L-uniform space to a complete L-uniform
space, and so the completion of an L-uniform space here is given as a reduced extension
L-uniform space with a complete L-uniform structure.

In Section 5, using the L-uniform structures ' and U” defined on the L-topological
group (G, 7) which are compatible with 7 as in [8], we shall define the notion of complete
L-topological group. A complete separated L-topological group (H,o) in which (G, 1) is
a dense subgroup will be called a completion of (G, 7).
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2. On L-filters

In this section, we recall and show some results concerning L-filters needed in the
paper. Denote by LX the set of all L-subsets of a non-empty set X, where L is a complete
chain with different least and greatest elements 0 and 1, respectively [19]. For each L-set
A € L%, let ) denote the complement of A, defined by )\ (x) = A(z)’ for all z € X. For
all x € X and « € Ly, the L-subset x, of X whose value « at  and 0 otherwise is called
an L-point in X and the constant L-subset of X with value a will be denoted by @.

L-filters. By an L-filter on a non-empty set X we mean [13] a mapping M : LX — L
such that M(a) < a for all @ € L and M(1) =1, and also M(AAp) = M(X) AM(u) for
all \, u € LX. M ia called homogeneous [11] if M(@) = « for all a € L. If M and N are
L-filters on X, M is called finer than N, denoted by M < N, provided M(X) > N())
holds for all A € LX.

Let Fr X denote the set of all L-filters on X, f : X — Y a mapping and M, N
are L-filters on X, Y, respectively. Then the image of M and the preimage of N with
respect to f are the L-filters 7, f(M) on Y and F; f(N) on X defined by Fr f(M)(n) =
M(po f) for all w € LY and F; f(N)(N) = V N(u) for all X € LX, respectively. For

pof<A

each mapping f : X — Y and each L-filter N on Y, for which the preimage F; f(N)
exists, we have Frf(F f(N)) < N. Moreover, for each L-filter M on X, the inequality
M < Fp f(Frf(M)) holds [13].

For each non-empty set A of L-filters on X, the supremum \/ M with respect to

MeA
the finer relation of L-filters exists and we have

(VM= A M)

MeA MeA

for all f € LX. The infimum A M of A exists if and only if for each non-empty finite

MeA
subset {M1,..., My} of A we have M1(A1) A+ A Mp(A\,) < sup(Ap A--- AN, for all
AL, ... Ay € LX [11]. If the infimum of A exists, then for each A € LX and n as a positive
integer we have
(A M) = VM)A AM(A)).
MeA AP A AR <A,

By a filter on X we mean a non-empty subset F of LX which does not contain 0
and closed under finite infima and super sets [17]. For each L-filter M on X, the subset
a-pr M of LX defined by: a-prM = {\ € L* | M()\) > a} is a filter on X.

A family (By)aer, of non-empty subsets of L~ is called valued L-filter base on X [13]
if the following conditions are fulfilled:
(V1) X € B, implies a < supA.

(V2) For all o, 3 € Lo and all L-sets A € B, and ;1 € Bg, if even v A f > 0 holds, then
there are a v > a A 3 and an L-set v < A A u such that v € B,,.



Each valued L-filter base (By)acr, on a set X defines an L-filter M on X by: M(\) =

\/  aforall A\ € LX. On the other hand, each L-filter M can be generated by many
BEBa, p<A

valued L-filter bases, and among them the greatest one (a-pr M)acr,-

Proposition 2.1 [13] There is a one-to-one correspondence between the L- filters M on
X and the families (Ma)acL, of prefilters on X which fulfill the following conditions:

(1) f e M, implies o < supf.
(2) 0 < < implies My 2O Mg.

(3) For each a € Ly with \/ [ =a we have (| Mg = M,.
0<fB<a 0<fB<a

This correspondence is given by My = a-pr M for all a« € Ly and M(f) = V o
gEMa, g<f

for all f € LX.

L-neighborhood filters. In the following, the topology in sense of [10, 16] will be
used which will be called L-topology. int, and cl; denote the interior and the closure
operators with respect to the L-topology 7, respectively. For each L-topological space
(X,7) and each x € X the mapping M (z) : LX — L defined by: A(z)()\) = int, \(x) for
all A € LX is an L-filter on X, called the L-neighborhood filter of the space (X, 7) at x,
and for short is called a 7-neighborhood filter at . The mapping & : LX — L defined
by #(\) = A(x) for all A € LX is a homogeneous L-filter on X. Let (X, 7) and (Y,0) be
two L-topological spaces. Then the mapping f : (X,7) — (Y,0) is called L-continuous
(or (7, 0)-continuous) provided intyp o f < int,(po f) for all u € LY. An L-filter M is
said to converge to x € X, denoted by M — z, if M < N (z) [14]. The L-neighborhood
filter N (F)) at an ordinary subset F' of X is the L-filter on X defined, by the authors in
[3], by means of N (z), x € F as:

N(F) = \/ N@).

zeF

The L-filter F' is defined by F' = \/ &. F' < N(F) holds for all F C X.
zeF

Lemma 2.1 [14] Let (X,7) and (Y,0) be two L-topological spaces and M an L-filter
on X, and let f : X — Y be a (7,0)-continuous mapping. Then M - implies that

FLi(M) — f(z).

Firstly, let us give this important definition.

For A\, € LX, let A x pu: X x X — L be the L-set defined as follows:

(Ax p)(x,y) = M)A p(y) (2.1)

for all z,y € X.



Remark 2.1 For all \, i, £,1 € LY, we have
AAp)x(EAn) = AxOA(xn) = (Axn)A(pxE).

Proposition 2.2 For any two L-filters £, M on X, the mapping L x M : LX*X — L
defined by
(Lx M)w) =\ (L) AM(p) (2.2)

Axu<u

for all w € LX*X is an L-filter on X x X.

Proof. From (2.1) and that £, M are L-filters, we get that

(LxM)@) =\ (LX) AM(u) < a.
Axp<a
Moreover, (£ x M)(1) = 1.
From Remark 2.1 and for all u,v € LX*X we get that

(Lx M) AL M)) =\ (L) AM@)A (L AMm)

AXp<u Exn<v

=V (EQAAYAMpEA)

AXp<u, EXn<v

< \V (LOANE) AM(Am))

(ANE) x (uAn)<unv

= (LxM)(uAw).
Also,

(Lx M)uav) =\ (L) A M)

AX pu<uAv

< Voo (L) AM(w)

AXpu<Lu, AX pu<v
=V LO)AM@) A\ (LX) AM(u)
Axpu<u Axpu<v
— (L x M)(u) A (L x M)(v).
Hence, (£ x M) is an L-filter on X x X. O

Here, we prove the following result.

Lemma 2.2 Let L and M be L-filters on X, and let (Lo)acr, and (Ma)acL, be the
families of prefilters on X correspond, according to Proposition 2.1, £ and M, respectively.
Then the family (Ko)acr, of subsets Ko of LX*X | where

Ko = {Axp|XNeE Ly, p€ My}, (2.3)

is a family of prefilters on X x X corresponds the L-filter £ x M.



Proof. Firstly, we show that, for all o € Lg, Ky is a prefilter on X x X. For any a € Ly,
we have K, = {Axu |\ € Ly, p € Mg} is non-empty, where £, and M,, are non-empty
for all « € Ly. Also, 0 does not exist in £, or M, implies that 0 &€ K, for all a € L.
From Remark 2.1 and from that £, and M, are prefilters, we get for all u,v € K, and
w > v that uAv € K, and w € Iy, for all @ € Ly. That is, Ky, for all a € Ly, is a prefilter
on X x X.

Let u € K. Then u = A x u, where A € L, and u € M, which implies that o < supA,
a < supp, and o < sup(A X p) = supu, that is, condition (1) of Proposition 2.1 holds.

Let 0 < o < B and v € Kg. Then u = XA x u, where A € Lz and u € Mg, which
implies, from L, 2 Lg and M, 2 Mg, that A € L, and © € M,, that is, u € K, and
condition (2) of Proposition 2.1 is fulfilled.

Since [ Lg=Lsand [ Mg=M,, we get that

0<fB<a 0<f<a
N Ks = [) (AxplreLspe Mg}
0<fB<a 0<fB<a
= Dxplre () Lope () Mg
0<fB<a 0<fB<a
= {AxXp|NeELypu€ My}
- ,Com

which means that condition (3) of Proposition 2.1 holds.

Hence, there is a one - to - one correspondence between the family (Ky)acr, of the
prefilters on X x X, defined by (2.3), and the L-filter £ x M on X x X, according to
Proposition 2.1, where

(Lx M)(u) = \/ a and a-pr(L£x M) =K,

VEL o, v<u

for all w € LX*X and for all & € Lg. O

3. U-cauchy filters

This section is devoted to speak of the cauchy filters in the L-uniform spaces defined
in [15].

L-uniform spaces. An L-filter i on X x X is called L-uniform structure on X [15]
if the following conditions are fulfilled:

(U1) (z,z)" <U for all z € X;

(U2) U =U"Y,

(U3) Uold <U.

Where (z,2) (1) = u(z,z), U (u) = U(u") and U oU)(u) = V U Aw) for all
w € LXX, and u=M(z,y) = u(y,z) and (vow)(z,y) = é/X(w(vxo:UzS)u/\ v(z,y)) for all
2,y € X.



A set X equipped with an L-uniform structure U is called an L-uniform space.

To each L-uniform structure U on X is associated a stratified L-topology 7;. The
related interior operator inty, is given by:

(intyA) () = U[z](N)

for all # € X and all A € LX, where U[Z](\) = V (U(u) A u(x)) and ufu](z) =
u[p]<A

V (u(y) ANu(y,z)). For all z € X we have

yeX

Ui = N(z)

where N (x) is the L-neighborhood filter of the space (X, 7,) at 2. That is, an L-filter M
in an L-uniform space (X,U) is said to converge to x € X if M <U[i].

Let U be an L-uniform structure on a set X. Then u € LX*X is called a surrounding
provided U(u) > o for some o € Ly and u = u~" [8].

A subset A C X, for a surrounding u in (X,U), is called small of order u if u(z,y) > «
for all z,y € A and for some o € L.

Definition 3.1 In an L-uniform space (X,U), an L-filter M on X is said to be a U-cauchy
filter provided for any surrounding wu, there exists a set B C X such that M < B and B
is small of order wu.

Now, we have the following expected result for the convergent L-filters.

Proposition 3.1 Every convergent L-filter in an L-uniform space (X,U) is a U-cauchy
filter.

Proof. Let M be an L-filter on X which converges to x € X. Since M < U[#], then we
can choose a set B C X such that M < B = U[z], that is,

MN) =\ Uw) Ap) = N\ My) = B2

ulp]<A yeB

for all A € LX. Since (z,2)" < U for all x € X, then u(z,z) > U(u) > « for any
surrounding u and for some a € Ly, that is, u(z, x) > « for all z € X and for some a € Ly.

Now, € B where & < U[&] = B. Also, for any y € B we get that \/ (aApu(z)) < A(y),
u[p]<A

for which \/(u(z,y) A u(2)) < Ay), and so a A pu(z) < u(z,y) A p(x) < A(y), and thus for

all x,y € B, we have u(z,y) > « for some a € Ly and M < B Hence, there is a set
B C X small of order any surrounding u in (X,U) and M < B, and therefore M is a
U-cauchy filter on X. O

Let A be a subset of a set X, & an L-uniform structure on X and i : A — X the
inclusion mapping of A into X. Then the initial L-uniform structure F; (i x i)(U) of U
with respect to i, denoted by Uy, is called an L-uniform substructure of U and (A,U,) an
L-uniform subspace of (X,U) [4].

In particular, we have the following result.



Lemma 3.1 Let (X,U) be an L-uniform space and A a non-empty subset of X. Then an
L-filter on A is a Us-cauchy filter if and only if it is a U-cauchy filter.

Proof. Let M be a Uz-cauchy filter on A, then there exists B C A with M < B and B
is small of order any surrounding uy4 in (A,U4), which means that there is B C A C X
such that M < B and u4(z,y) > o for all 2,y € B and for some a € Ly, that is, for any
surrounding u in (X,U),

u(@,y) = (uo (i x i) (2,y) = ualz,y) > o

for all 2,y € B and for some a € Ly, and then M < B and B C X is small of order any
surrounding w in (X,U). Hence, M is a U-cauchy filter.

Conversely; there exists B C A C X with M < B and B is small of order any
surrounding u in (X,U), that is, u(x,y) > « for all z,y € B and for some « € Ly, which
means that, for every surrounding uy in (A,U4),

ua(z,y) = (wo (i x 1)) (z,y) = u(z,y) > a

for all z,y € B and for some a € L. Hence, M < B and B C A is small of order any
surrounding u 4 in (A,Uy), and thus M is a Us-cauchy filter. O

A mapping f: (X,U) — (Y, V) between L-uniform spaces (X,U) and (Y, V) is said to
be L-uniformly continuous (or (U, V)-continuous) provided

FulfxHU) <V
holds.

‘We shall use this result.

Lemma 3.2 Let (X,U) and (Y,V) be L-uniform spaces and f : X — Y a (U,V)-
continuous mapping. If M is a U-cauchy filter, then Fr f(M) is a V-cauchy filter.

Proof. M is a U-cauchy filter on X means that there exists B C X such that M < B
and B is small of order any surrounding u in (X,U), that is, M < B and u(z,y) > « for
all x,y € B and for some « € Ly, which implies that,

Frf(M) < FLf(B) = (f(B))
for the set f(B) C Y. Let v be a surrounding in (Y, V), then from being f is (U, V)-
continuous, we have
a<V(v) <U(vo (f x f))=Fo(f x f)U)()
for some a € Lo, and v = v~! implies that (vo (f x f)) "' =v "o (f x f)=vo (f x f),
that is, u = v o (f x f) is a surrounding in (X,U), which means that
a<u(z,y) = (vo (fx f))zy)=o(f(z), f(y))

for all f(z), f(y) € f(B) and for some o € Lo. Hence, Frf(M) < (f(B)) for the set
f(B) CY and f(B) is small of order every surrounding in (Y,V), and thus Fr f(M) is a
V-cauchy filter. O



4. The completion of L-uniform spaces

Firstly, we give these general notes.

If (Y,0) is an L-topological space and X is a non-empty subset of Y, then the initial
L-topology of o, with respect to the inclusion mapping ¢ : X — Y, is the L-topology
iYoo) ={i"1(A\) | A € 6} on X and is denoted by ox.

An L-topological space (Y, o) is called an extension of the L-topological space (X, 7)
if XCY,7=0x and X is o-dense in Y.

The extension (Y, o) of (X, 7) is called reduced if for any x # y in Y and x € Y\ X, we
have N, (z) # N5 (y), where N, (x) denotes the L-neighborhood filter of (Y, o) at a point
reY.

In [2, 3, 7, 8], we have introduced and studied the notion of GT;-spaces for all i =
0,1,2,3,33,4.

GT;-spaces. An L-topological space (X, ) is called [2, 3, 7]:
(1) GTy if for all z,y € X with z # y we have & £ N(y) or §y £ N (x).
(2) GT, if for all z,y € X with x # y we have & £ N(y) and y £ N (x).

(3) GTy if for all z,y € X with x # y, we have M £ N (z) or M £ N (y) for all L-filters
M on X.

(4) regular if for all x € F and F = cl. F', we have N (z) AN (F) does not exist.
(5) GT3 if it is GT; and regular.

(6) completely regular if for all x ¢ F € 7/, there exists a L- continuous mapping
f:(X,7) — (I1,S) such that f(z) =1 and f(y) =0 for all y € F.

(7) GT31 (or L-Tychonoff ) if it is GT1 and completely regular.
2
Denote by GT;-space the L- topological space which is GT;, i = 0,1, 2, 3, 3%.

Proposition 4.1 [2, 3, 7] Every GT;-space is GT;—1-space for each i = 1,2,3, and every
GTg1 -space is a GT3-space.
2

Lemma 4.1 If the extension (Y,o) of (X,7) is a GTp-space, then (Y,o) is a reduced
extension of (X, 7).

Proof. Clear. O
Lemma 4.2 For a GTy-space (X, T), the reduced extension (Y, o) also is a GTy-space.
Proof. For all z # y in Y\ X, we have N, (x) # N, (y). Also for all x # y in X, we have

N (z) # N;(y). Hence, for all z # y in Y we get that NV, (z) # Ny (y), and thus (Y, 0) is
a Glp-space. O



Remark 4.1 Let (X, 7) be an L-topological space and X C Y. If we succeed in defining

an L-topology o on Y such that (Y,o) is an extension of (X, 7), then X is a o-dense

in Y implies that every o-neighborhood of each y € Y intersects X, hence the infimum

N,(y) A X exists where, for all f,g € LX, int,f(y) = f(z) for some z € X implies

inte f(y) A A\ g(x) < f(z) for some z € X and also int, f(y) A A g(z) < g(x) for all
rzeX zeX

r € X, and thus int, f(y) A A g(z) <sup(f Ag) for all f,g € L¥.
zeX

Definition 4.1 Let (X, 7), (Y,0) be two L- topological spaces and (Y, o) an extension of
(X, 7). Then the L-filter N, (z) A X on X, denoted by M, will be called a trace filter at
x €Y into Y and M, = N;(z) whenever x € X. Clearly, M, — .

Definition 4.2 Let (X, 7) and (Y, 0) be two L-topological spaces, (X', 7*) an extension
of (X,7)and let f : X — Y bea (7, 0)-continuous mapping. Then the restriction mapping
glx on X of the (7%, o)-continuous mapping g : X’ — Y, which coincides with f, is called
a continuous extension of f into X'.

Remark 4.2 Let (X, 7) and (Y, 0) be two L-topological spaces, (X', 7*) an extension of
(X,7), f: X — Y amapping and M, = N(z) AX a trace filter on X at z € X’. For the
existence of a continuous extension g : X’ — Y, it is necessary that f is (7, o)-continuous
and Fr, f(My) — x for a trace filter M, at z € X'. If (Y, 0) is a regular space, then these

conditions also are sufficient. It is clear that M, T

Lemma 4.3 With the notations in Remark 4.2, let g1 : X' — Y and go : X' — Y be
(7%, 0)-continuous, (Y,0) is a GTz-space and gi|x = g2|x = f. Then g1 = g2.

Proof. Let z € X’ be arbitrary and M., —= «. From Lemma 2.1, we get that Frgi(My) — g1(x)
and Fr,go(My) — g2(x), and also we have Frg1(My) = Frge(My) = Frf(My) an L-
filter on Y, and since (Y, 0) is a GTy-space, then g;(z) = ga(x). Thus g1 = go. O

Lemma 4.4 An estension (Y,0) of (X,7) is reduced if and only if M, # M, for all
x#yinY andx € Y\X.

Proof. The proof comes from that
if and only if NV, (z) # N,(y). O

Definition 4.3 An L-uniform space (Y,U*) is called an extension of the L-uniform space
(X,U) it X CY, U =U% and X is a 7y=-dense in Y.

Definition 4.4 An L-uniform space (Y,U*) is called a reduced extension of the L-uniform
space (X,U) if (Y, 7y+) is a reduced extension of (X, 7).



An L-uniform structure U on a set X is called separated [5] if for all z,y € X with
x # y there is u € LX*X such that U(u) = 1 and u(z,y) = 0. The space (X,U) is called
separated L-uniform space.

Proposition 4.2 [5] Let X be a set, U an L-uniform structure on X and 1y the L-topology
associated with U. Then

(X,U) is separated if and only if (X, 1) is GTy-space.

Lemma 4.5 If (X,U) is a separated L-uniform space and (Y,U*) is a reduced extension
of (X,U), then (Y,U*) is separated as well.

Proof. From Proposition 4.2, we get that (X, ) is a GTp-space and since (Y, 7y+) is a
reduced extension of (X, 1), then by Lemma 4.2 we have (Y, 734~) is a GTp-space. Again
by Proposition 4.2, we get that (Y,U*) is separated. O

Now, we give this definition.

Definition 4.5 An L-uniform space (X,U) is called complete if every U-cauchy filter M
on X is convergent.

Definition 4.6 An L-uniform space (Y,U*) is called a completion of the L-uniform space
(X,U) if it is a reduced extension of (X,U) and U* is complete.

Lemma 4.6 The completion of a separated L-uniform space is separated as well.

Proof. The proof comes from Lemma 4.5. O

5. The completion of L-topological groups
In this section, we introduce the main notion of this paper, that the completion of
L-topological groups using the completion of L-uniform spaces.

L-topological groups. Let G be a multiplicative group. We denote, as usual, the

identity element of G by e and the inverse of an element a of G by a~ .

Definition 5.1 [1, 6] Let G be a group and 7 an L-topology on G. Then (G, 7) will be
called an L-topological group if the mappings

m:(GxG,7x71)— (G,7) defined by m(a,b) =ab for all a,be G

and
i:(G,7) — (G,7) defined by i(a)=a""! foral acG

are L-continuous. 7 and ¢ are the binary operation and the unary operation of the inverse
on G, respectively.
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For all A € L%, denote by A’ the L-set Aoi in G, that is, AX'(xz) = A(z~!) for all z € G.
We also denote Frm(£ x M) by LM and Fri(M) by M, which means that LM()\) =
L x M(Xom) and M*()\) = M(X\) for all L-filters £, M on G and all L-sets A € LC.

A surrounding u € LX*X is called left (right) invariant provided
u(az, ay) = u(z,y) (u(za,ya) = u(z,y)) for all a,z,y € X.

U is called a left (right) invariant L-uniform structure if & has a valued L-filter base
consists of left (right) invariant surroundings [8].

Proposition 5.1 [8] Let (G, T) be an L-topological group. Then there exist on G a unique
left invariant L-uniform structure U' and a unique right invariant L-uniform structure U"
compatible with T, constructed using the family (a-pr N(€))acr, of all filters a-pr N (e),
where N (e) is the L-neighborhood filter at the identity element e of (G, T), as follows:

U(u) = \/ o and U (u) = \/ a, (5.1)
vell,, v<u vel?, v<u

where
U, = a-pris! and U, = a-prid” (5.2)

are defined by
UL = {u e LY9C | u(z,y) = AAN) (2 ty) for some X € a-prN(e)} (5.3)

and
u) ={ue LOXG | u(z,y) = AAX) (zy™1) for some A € a-prN(e)} (5.4)

We should notice that we shall fix the notations 4!, U", U’, and U7, along the paper to
be these defined above.

Definition 5.2 U4* = U' v U" is called the bilateral L-uniform structure of the L-
topological group (G, 7), where U' and U" are defined in (5.1) - (5.4).

Remark 5.1 M is a UP-cauchy filter if it is U'-cauchy filter and U"-cauchy filter simul-
taneously.

Remark 5.2 (cf. [8]) For the L-topological group (G, 7), the elements of !, (UZ) are left
(right) invariant surroundings. Moreover, (U )acr, (US)acr,) is a valued L-filter base for
the left (right) invariant L-uniform structure 4! (U") defined by (5.1) - (5.4), respectively.

Now, suppose that (G, 7) has a countable L-neighborhood filter A'(e) at the identity
e. Since any L-topological group, from Proposition 5.1, is uniformizable, then the left and
the right invariant L-uniform structures &' and U", constructed also in Proposition 5.1,
has, from Remark 5.2, a countable L-filter base Z/{ll and U, respectively, n € N.

We may recall that if (G, 7) is an L-topological group and A is a subgroup of G, then
the L-topological subspace (A, 74) is called an L-topological subgroup [6].
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Proposition 5.2 Let (A, 74) be an L-topological subgroup of an L-topological group (G, T),
and further U be a complete L-uniform structure on G compatible with T and Uy is the
L-uniform structure on A compatible with 4. Then

(d1) If L and M are Uy-cauchy filters, then LM is a Ua-cauchy filter as well,

(d2) If M is a Ua-cauchy filter, then M' is a Ua-cauchy filter as well.

Proof. By Lemma 3.1, £ and M are both U-cauchy filters too, thus i is complete implies
L - and M -y for some z,y € G, that is, £L < N (z) and M < N (y). Now, for each

€ € LE we have

LM(E) = Frm(Lx M)(E)
Lx M(Eom)
— VL AMG)

AxXpu<éor

Vo N@X) AN (@) ()

AX pu<Eor

= \/ int: A(z) Aint-p(y)
AxXpu<Eor

> int,&(zy)
= N(zy)(©).

That is, LM -y and hence, LM is a U-cauchy filter and at the same time a U 4-cauchy

\Y]

filter from Proposition 3.1 and Lemma 3.1.

Similarly, if M is a Ua-cauchy filter, and thus a U-cauchy filter, then M -, and
hence by Lemma 2.1, M¥()\) = Fri(M) - i(x) = 27!, This means that M? is a U-cauchy
filter and also a U4-cauchy filter. O

Definition 5.3 Let us call an L-uniform structure U of an L-topological group (G,T)
admissible if 7y = 7 and the conditions (d1) and (d2) in Proposition 5.2 are fulfilled.

Definition 5.4 An L-topological group (G, 7) is called complete if its bilateral L-uniform
structure U® is complete. (G, ) is called left complete (right complete) if it is complete
and its left (right) L-uniform structure U! (U") is admissible.

Lemma 5.1 The inverse mapping i : (G,7) — (G, 1), i(x) = 27, of any L-topological
group (G, 7) is (U',U")-continuous and (U",U")-continuous, and moreover U™ = Fr(i x
DU, U = Fri x i)un).

Proof. For u € U, and for some \ € a - prN(e), we have

(wo (i x D) (z,y) = u(@™y™") = AAN)(@y™") = w(z,y)
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for some w € UL, Since Fr(i x i)(U)(u) = Ul(uo (i x 1)) for all u € LX*X then
Fr(ixi) (U (u) = U (u) for all w € LX*X | and hence i is a (U',U")-continuous. Similarly,
we get that Fr(i x i)(U") = U, and thus i is a (U",U")-continuous. O

Proposition 5.3 If M is a U'-cauchy filter in an L-topological group (G, T), then M? is
a U -cauchy filter and the converse.

Proof. Since, from Lemma 5.1, the mapping i : (G,U') — (G,U") is (U',U")-continuous,
then M is a U'-cauchy filter implies, from Lemma 3.2, that F7 (i)(M) = M is aU"-cauchy
filter. Similarly, the converse follows. O

Proposition 5.4 [15] Let (X,U) and (Y,V) be two L-uniform spaces and f : X — Y
a mapping. Then the mapping f : (X,74) — (Y, 7v) is L-continuous if and only if f is
(U, V)-continuous.

Here, we give this result.

Lemma 5.2 If U and V are two L-uniform structures on an L-topological group (G, T)
and both L and M are U- (V-)cauchy filters on G, then Lx M is ald xU- (V x V-)cauchy
filter on G x G.

Proof. From Proposition 2.2, £ x M is an L-filter on G x G. Let £ and M be U-cauchy
filters on G, then there exist A, B C G such that £ < A and M < B and A, B are small
of order every surrounding v in (G,U). Now,

(Lx M) =\ (L) AM(p))

Axp<lu

V' (A A B(u)

AXpu<u

=V A @) Au)

Axu<u x€A,yeB

=V A Axulay)

Axu<u x€A,yeB
= u(A,B)
= (A x B)(v)

v

for all u € LE*C. That is, there exists A x B C G x G such that £ x M < (A x B).

Let ¢ : (G x G) x (G x G) — L be a mapping and u a surrounding in (G,U), then
from Proposition 5.4, 7w is (U x U,U)-continuous, and then

a<Uu) <Frrxm)UxU)(u) =UxU(uo (mxm))=UXxU®)
and also, v = ! implies that

pl=(uo(mxn)t=ulto(mxm)=uo(nm xm) =1,
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that is, ¢ is a surrounding in (G x G,U xU), and for any surrounding ¢ in (G x G,U xU),
there exists a surrounding u in (G,U) such that ¢ = uwo (7 x 7).

Now, o < wu(z,y) for all z,y € A and f < wu(r,s) for all ;s € B and for some
a, € Lo imply that ¥((x,7),(y,s)) = (wo (7 x 7))((x,r),(y,s)) = u(xr,ys), and by
choosing (x,y) = (e,e) or (r,s) = (e, e), we get that u(zr,ys) > v for some v € Ly, that
is, for all (z,7), (y,s) € A x B, we have ¢((x, ), (y,s)) > for some v € Ly, which means
that A x B is small of order every surrounding in (G x G,U x U), and therefore £ x M
is a U x U-cauchy filter. O

Proposition 5.5 If U' and U™ are the left and the right L-uniform structures of an L-
topological group (G,T) and both of L and M are U'- (U"-)cauchy filters, then LM has
the same property.

Proof. From Lemma 5.2 and Lemma 3.2, we have LM = Frr(LxM) is ald'- (U"-)cauchy
filter. O

Accordingly, the property of being admissible depends for ¢! and " on the fact
whether condition (d2) of Proposition 5.2 is fulfilled.

Proposition 5.6 The following statements are equivalent in any L-topological group (G, T).

1) Together with M, M is a U'-cauchy filter,

2) Together with M, M is a U"-cauchy filter,

4) Every U"-cauchy filter is a U'-cauchy filter,

5) Ut is admissible,

6

(1)
(2)
(3) Euvery U'-cauchy filter is a U -cauchy filter,
(4)
(5)
(6) U" is admissible.

Proof. (1) <= (5) and (2) <= (6) come from Proposition 5.5.
(1) <= (2) follows from Proposition 5.3 and that (M)’ = M.

From (1), since M is a U!-cauchy filter implies that M? is a U'-cauchy filter, and thus
M is a U"-cauchy filter according to Proposition 5.3, then (1) = (3); On the other hand,
if M is a U'-cauchy filter, then it is a U -cauchy filter and thus M? is a U!-cauchy filter.
That is, (1) <= (3).

(2) <= (4) is obtained similarly. O

Proposition 5.7 If the left L-uniform structure U' or the right L-uniform structure U"
of an L-topological group (G,T) is complete, then the other one is complete as well and
both are admissible.
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Proof. If U is complete and M is a U -cauchy filter, then from Proposition 5.3, M? is
a U'-cauchy filter, thus M® s in G and then M - xz~1. Hence, U" is complete, and

the completeness of U! follows by the same way from the completeness of U".

At last, M is a U'-cauchy filter implies that M converges to = € G, that is, M < U'[],
and then M* < Z/{l[:c_l] and from Proposition 3.1, M? is a U'-cauchy filter. Proposition 5.6
implies that both ¢! and Y" are admissible. O

Lemma 5.3 If U’ is the bilateral L-uniform structure of an L-topological group (G, T),
then i is (U, UP)-continuous.

Proof. From that U < U® and U™ < UP, we get that Fr (i x i)U' < U and Fr(i x i) U™ <
U®, and thus
Frli x )U° = Fr(i x U v FrGi x U™ < U°.

Hence, i is (U°,UP)-continuous. O

L-metric spaces. We use here the notion of L-metric space defined by means of the
notion of L-real numbers in [12]. By an L-real number is meant [12] a convex, normal,
compactly supported and upper semi-continuous L-subset of the set of all real numbers
R. The set of all L-real numbers is denoted by Rz. R is canonically embedded into
R, identifying each real number a with the crisp L-number a™ defined by a™ (&) = 1 if

& = a and 0 otherwise. The set of all positive L-real numbers is defined and denoted by:
R; ={z€Rp | z(0)=1and 0~ <z} [12].

A mapping ¢ : X x X — R is called an L-metric [12] on X if the following conditions
are fulfilled:

(1) o(xz,y) =07~ if and only if x = y
(2) eolz,y) = e(y, )
(3) o(x,y) < o(x,2) + o(2,y)-
If p: X x X — R satisfied the conditions (2) and (3) and the following condition:
(D" o(z,y) =0~ ifz=y

then it is called an L-pseudo-metric on X.

A set X equipped with an L-pseudo-metric (L-metric) ¢ on X is called an L-pseudo-
metric (L-metric) space.

To each L-pseudo-metric (L-metric) g on a set X is generated canonically a stratified
L-topology 7, on X which has {e00, | e €€, x € X} as a base, where g, : X — RJ is
the mapping defined by 0,(y) = o(z,y) and

E = {@/\R6|R*L | 0>0, aeL}U{a | a€ L},

here @ has R} as domain.
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An L-topological space (X, 7) is called pseudo-metrizable (metrizable) if there is an
L-pseudo-metric (L-metric) g on X inducing 7, that is, 7 = 7.

An L-pseudo-metric g is called left (right) invariant if

o(z,y) = o(ax, ay) (o(z,y) = o(za,ya)) for all a,z,y € X.

An L-topological group (G, 1) is called separated if for the identity element e, we have

A A(e) > a, and A Az) < a for all x € G with = # e and for all o € Lo
AE€a-prN (e) AE€a-prN (e)

[8].

Proposition 5.8 [9] Let (G, T) be a ( separated ) L-topological group. Then the following
statements are equivalent.

1) 7 is pseudo-metrizable (metrizable);

(1)
(2) e has a countable L-neighborhood filter N (e);

(3) 7 can be induced by a left invariant L-pseudo-metric (L-metric);
(4)

4) 7 can be induced by a right invariant L-pseudo-metric (L-metric).

Definition 5.5 An L-uniform structure U on a set X is called pseudo-metrizable (metriz-
able) if there exists a countable L-uniform base for ¢ (and U is separated).

Proposition 5.9 [8] Let (G, T) be an L-topological group. Then there exist on G a unique
left invariant L-uniform structure U' and a unique right invariant L-uniform structure U"
compatible with T, constructed with (5.1) - (5.4).

Proposition 5.10 For any (separated) L-topological group (G,T), The L-uniform struc-
tures U', U™ and U constructed in (5.1) - (5.4) are pseudo-metrizable (metrizable).

Proof. From Proposition 5.8, 7 = 7, = T,, Where g1 is a left, po is a right invariant
L-pseudo-metric (L-metric) on G, and then U,, is left invariant and U, is right invariant.
From Proposition 5.9, 4! and U" are unique, that is, Uy, = U, U,, = U™ and U', U" are
pseudo-metrizable (metrizable). Moreover, T, = Ty yr = T V Tyr = 7. Hence, U is
pseudo-metrizable (metrizable) as well. O

Proposition 5.11 [4] Let (X,U) be an L-uniform space, (A,Us) an L-uniform subspace
of (X,U) and (14)a the L-subtopology of the L-topology 1y associated with U. Then the
L-topology associated to Ua coincides with (1) a, that is, Tq,) = (Tu)A-

Lemma 5.4 Let (A, 74) be an L-topological subgroup of an L-topological subgroup (G, ),
andU', U™ and UP the left, the right and the bilateral L-uniform structures of (G, 7). Then
the corresponding L-uniform structures of (A, 74) are UY) 4, U) 4 and (U°) 4, respectively.
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Proof. From Proposition 5.11, we have 7y, = (70)a = 7a and, together with U,

)A
(U") 4 is left invariant as well, and hence (U4') 4 is the left invariant L-uniform structure of

(A,74). By the same (U")4 is the right invariant L-uniform structure of (A, 74) as well.
Moreover,

Tt = Tad vy = Tt Vg = () a vV (ur)a = (p)a = 74. O

Here, we give the essential result in this section.

Definition 5.6 For a separated L-topological group (G, 1), let us call (H, o) a completion
of (G,7) if it is complete separated L-topological group and in which (G, 7) is a dense
subgroup.

In the following we need this result.

Proposition 5.12 [8] Let (G, T) be an L-topological group. Then the following statements
are equivalent.

(1) The L-topology T is GTy.
(2) The L-topology T is GTx.

(3) The L-topological group (G, T) is separated.

Proposition 5.13 Let (G,T) be a separated L-topological group, U an admissible L-
uniform structure on G, and (H,V) the completion of (G,U). Then an operation ©' :
H x H — H can be defined on H in a unique way so that H equipped with 7’ is a group,
and (H, ) is an L-topological group of which G is a subgroup.

Proof. Let o =71,. If ' : H x H — H is defined by 7'(y, z) = yz for all y,z € H, then
m'laxq = m. Now, let £, and M, be two trace filters on H at x and y into H, respectively.
Since Ly — x and M, — y, that is, L:(A) > inteA(z) and My (p) > intypu(y), then

LoMy(€) = Fur(Lox My)(©)
— Ex S My(é © 77/)

= \/ /-:z()‘) A My(ﬂ)

Axu<Eorn!

> \/ inte A(z) Aintepu(y)
AXpu<Eon’

> intaf(xy)
= Na (.%'y) (6)7

and then £, M, - Ty From that U is separated and from Lemma 4.6 and Proposi-

tion 5.12, we get (H, o) is a GTy-space, and therefore these properties, using Lemma 4.3
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and Remark 4.2, define 7’ in a unique way as the only continuous extension of 7 into
H x H. Also, if i/ : H — H is defined by 4'(y) = y~! for all y € H, then '|g = i and
Fri'(Ly) = £;’ — 21 for any trace filter £, on H, and i’ is (o, o)-continuous, that is, as

in before, ' is a continuous extension of ¢ defined in a unique manner.

Hence, 7’ is (0 X o0, 0)-continuous and 4’ is (o, o)-continuous imply that (H,o) is an
L-topological group in which (G, 7) is an L-topological subgroup. O

Proposition 5.14 Under the hypothesis of Proposition 5.13, if the left, the right or the
bilateral L-uniform structure of (H,ty~) is U U, or U respectively, then the corre-
sponding L-uniform structures of (G,7) are U a, U g, or (U?)q.

Proof. It is a consequence of Lemma 5.4. O

Proposition 5.15 Let (G,7) be a separated L-topological group, UP its bilateral L-uniform
structure, and (H,o = 71y) the L-topological group constructed in Proposition 5.13 with
the choice V = V. Then (H,o) is a completion of (G,T).

Proof. If i/ = U®, then Proposition 5.13 can be applied and U° is admissible where both
of U' and U™ are admissible. Also, V is a complete separated L-uniform structure such that
o =1y, G is o-dense in H and (V)g = U’. On the other hand, by Proposition 5.14, for
the bilateral L-uniform structure V° of the L-topological group (H,o0) we have 0 = T(vb)

and (V) = U, Therefore, the bilateral L-uniform structure V° of (H, o) is complete and
(H, o) is a completion of (G, 7). O
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