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Abstract
The target in this paper, is to extend an L-topological group to a complete L-topological

group, and so giving the notion of the completion of an L-topological group. In the way, we have
introduced the notion of the completion of an L-uniform space.
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1. Introduction

In this paper, we gave new notions of L-filter, L-uniform space and L-topological
group. We defined, in an L-uniform space (X,U), a U-cauchy filter and have shown when
(X,U) to be a complete L-uniform space, and also how an L-topological group (G, τ) to
be complete. Finally, the completion of an L-uniform space and the completion of an
L-topological group are investigated.

In Section 2, we recall some results of L-filters and L-neighborhood filters defined by
Gähler in [11, 13, 14]. Also, we have defined the product of two L-sets and the product of
two L-filters.

In Section 3, we have defined in an L-uniform space (X,U), a new notion of L-filter
called U-cauchy filter. We showed that any convergent L-filter is a U-cauchy filter and the
converse holds in the complete L-uniform spaces.

Section 4 is devoted to show how to extend an L-uniform space to a complete L-uniform
space, and so the completion of an L-uniform space here is given as a reduced extension
L-uniform space with a complete L-uniform structure.

In Section 5, using the L-uniform structures U l and Ur defined on the L-topological
group (G, τ) which are compatible with τ as in [8], we shall define the notion of complete
L-topological group. A complete separated L-topological group (H,σ) in which (G, τ) is
a dense subgroup will be called a completion of (G, τ).
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2. On L-filters

In this section, we recall and show some results concerning L-filters needed in the
paper. Denote by LX the set of all L-subsets of a non-empty set X, where L is a complete
chain with different least and greatest elements 0 and 1, respectively [19]. For each L-set
λ ∈ LX , let λ′ denote the complement of λ, defined by λ′(x) = λ(x)′ for all x ∈ X. For
all x ∈ X and α ∈ L0, the L-subset xα of X whose value α at x and 0 otherwise is called
an L-point in X and the constant L-subset of X with value α will be denoted by α.

L-filters. By an L-filter on a non-empty set X we mean [13] a mapping M : LX → L
such that M(α) ≤ α for all α ∈ L and M( 1 ) = 1, and also M(λ∧µ) = M(λ)∧M(µ) for
all λ, µ ∈ LX . M ia called homogeneous [11] if M(α) = α for all α ∈ L. If M and N are
L-filters on X, M is called finer than N , denoted by M ≤ N , provided M(λ) ≥ N (λ)
holds for all λ ∈ LX .

Let FLX denote the set of all L-filters on X, f : X → Y a mapping and M, N
are L-filters on X, Y , respectively. Then the image of M and the preimage of N with
respect to f are the L-filters FLf(M) on Y and F−L f(N ) on X defined by FLf(M)(µ) =
M(µ ◦ f) for all µ ∈ LY and F−L f(N )(λ) =

∨
µ◦f≤λ

N (µ) for all λ ∈ LX , respectively. For

each mapping f : X → Y and each L-filter N on Y , for which the preimage F−L f(N )
exists, we have FLf(F−L f(N )) ≤ N . Moreover, for each L-filter M on X, the inequality
M≤ F−L f(FLf(M)) holds [13].

For each non-empty set A of L-filters on X, the supremum
∨

M∈A
M with respect to

the finer relation of L-filters exists and we have

(
∨

M∈A

M)(f) =
∧

M∈A

M(f)

for all f ∈ LX . The infimum
∧

M∈A
M of A exists if and only if for each non-empty finite

subset {M1, . . . ,Mn} of A we have M1(λ1) ∧ · · · ∧Mn(λn) ≤ sup(λ1 ∧ · · · ∧ λn) for all
λ1, . . . , λn ∈ LX [11]. If the infimum of A exists, then for each λ ∈ LX and n as a positive
integer we have

(
∧

M∈A

M)(λ) =
∨

λ1∧···∧λn≤λ,
M1,...,Mn∈A

(M1(λ1) ∧ · · · ∧Mn(λn)).

By a filter on X we mean a non-empty subset F of LX which does not contain 0
and closed under finite infima and super sets [17]. For each L-filter M on X, the subset
α-prM of LX defined by: α-prM = {λ ∈ LX | M(λ) ≥ α} is a filter on X.

A family (Bα)α∈L0 of non-empty subsets of LX is called valued L-filter base on X [13]
if the following conditions are fulfilled:

(V1) λ ∈ Bα implies α ≤ supλ.

(V2) For all α, β ∈ L0 and all L-sets λ ∈ Bα and µ ∈ Bβ, if even α ∧ β > 0 holds, then
there are a γ ≥ α ∧ β and an L-set ν ≤ λ ∧ µ such that ν ∈ Bγ .
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Each valued L-filter base (Bα)α∈L0 on a set X defines an L-filter M on X by: M(λ) =∨
µ∈Bα, µ≤λ

α for all λ ∈ LX . On the other hand, each L-filter M can be generated by many

valued L-filter bases, and among them the greatest one (α-prM)α∈L0 .

Proposition 2.1 [13] There is a one-to-one correspondence between the L- filters M on
X and the families (Mα)α∈L0 of prefilters on X which fulfill the following conditions:

(1) f ∈Mα implies α ≤ supf .

(2) 0 < α ≤ β implies Mα ⊇Mβ.

(3) For each α ∈ L0 with
∨

0<β<α
β = α we have

⋂
0<β<α

Mβ = Mα.

This correspondence is given by Mα = α-prM for all α ∈ L0 and M(f) =
∨

g∈Mα, g≤f
α

for all f ∈ LX .

L-neighborhood filters. In the following, the topology in sense of [10, 16] will be
used which will be called L-topology. intτ and clτ denote the interior and the closure
operators with respect to the L-topology τ , respectively. For each L-topological space
(X, τ) and each x ∈ X the mapping N (x) : LX → L defined by: N (x)(λ) = intτλ(x) for
all λ ∈ LX is an L-filter on X, called the L-neighborhood filter of the space (X, τ) at x,
and for short is called a τ -neighborhood filter at x. The mapping ẋ : LX → L defined
by ẋ(λ) = λ(x) for all λ ∈ LX is a homogeneous L-filter on X. Let (X, τ) and (Y, σ) be
two L-topological spaces. Then the mapping f : (X, τ) → (Y, σ) is called L-continuous
(or (τ, σ)-continuous) provided intσµ ◦ f ≤ intτ (µ ◦ f) for all µ ∈ LY . An L-filter M is
said to converge to x ∈ X, denoted by M -

τ
x, if M≤ N (x) [14]. The L-neighborhood

filter N (F ) at an ordinary subset F of X is the L-filter on X defined, by the authors in
[3], by means of N (x), x ∈ F as:

N (F ) =
∨

x∈F

N (x).

The L-filter Ḟ is defined by Ḟ =
∨

x∈F
ẋ. Ḟ ≤ N (F ) holds for all F ⊆ X.

Lemma 2.1 [14] Let (X, τ) and (Y, σ) be two L-topological spaces and M an L-filter
on X, and let f : X → Y be a (τ, σ)-continuous mapping. Then M -

τ
x implies that

FLf(M) -
σ

f(x).

Firstly, let us give this important definition.

For λ, µ ∈ LX , let λ× µ : X ×X → L be the L-set defined as follows:

(λ× µ)(x, y) = λ(x) ∧ µ(y) (2.1)

for all x, y ∈ X.
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Remark 2.1 For all λ, µ, ξ, η ∈ LX , we have

(λ ∧ µ)× (ξ ∧ η) = (λ× ξ) ∧ (µ× η) = (λ× η) ∧ (µ× ξ).

Proposition 2.2 For any two L-filters L,M on X, the mapping L ×M : LX×X → L
defined by

(L ×M)(u) =
∨

λ×µ≤u

(L(λ) ∧M(µ)) (2.2)

for all u ∈ LX×X is an L-filter on X ×X.

Proof. From (2.1) and that L,M are L-filters, we get that

(L ×M)(α̃) =
∨

λ×µ≤α̃

(L(λ) ∧M(µ)) ≤ α.

Moreover, (L ×M)(1̃) = 1.

From Remark 2.1 and for all u, v ∈ LX×X , we get that

(L ×M)(u) ∧ (L ×M)(v) =
∨

λ×µ≤u

(L(λ) ∧M(µ)) ∧
∨

ξ×η≤v

(L(ξ) ∧M(η))

=
∨

λ×µ≤u, ξ×η≤v

(L(λ ∧ ξ) ∧M(µ ∧ η))

≤
∨

(λ∧ξ)×(µ∧η)≤u∧v

(L(λ ∧ ξ) ∧M(µ ∧ η))

= (L ×M)(u ∧ v).

Also,

(L ×M)(u ∧ v) =
∨

λ×µ≤u∧v

(L(λ) ∧M(µ)

≤
∨

λ×µ≤u, λ×µ≤v

(L(λ) ∧M(µ))

=
∨

λ×µ≤u

(L(λ) ∧M(µ)) ∧
∨

λ×µ≤v

(L(λ) ∧M(µ))

= (L ×M)(u) ∧ (L ×M)(v).

Hence, (L ×M) is an L-filter on X ×X. 2

Here, we prove the following result.

Lemma 2.2 Let L and M be L-filters on X, and let (Lα)α∈L0 and (Mα)α∈L0 be the
families of prefilters on X correspond, according to Proposition 2.1, L and M, respectively.
Then the family (Kα)α∈L0 of subsets Kα of LX×X , where

Kα = {λ× µ | λ ∈ Lα, µ ∈Mα}, (2.3)

is a family of prefilters on X ×X corresponds the L-filter L ×M.

4



Proof. Firstly, we show that, for all α ∈ L0, Kα is a prefilter on X ×X. For any α ∈ L0,
we have Kα = {λ×µ | λ ∈ Lα, µ ∈Mα} is non-empty, where Lα and Mα are non-empty
for all α ∈ L0. Also, 0 does not exist in Lα or Mα implies that 0 6∈ Kα for all α ∈ L0.
From Remark 2.1 and from that Lα and Mα are prefilters, we get for all u, v ∈ Kα and
w ≥ v that u∧v ∈ Kα and w ∈ Kα for all α ∈ L0. That is, Kα, for all α ∈ L0, is a prefilter
on X ×X.

Let u ∈ Kα. Then u = λ×µ, where λ ∈ Lα and µ ∈Mα, which implies that α ≤ supλ,
α ≤ supµ, and α ≤ sup(λ× µ) = supu, that is, condition (1) of Proposition 2.1 holds.

Let 0 < α ≤ β and u ∈ Kβ. Then u = λ × µ, where λ ∈ Lβ and µ ∈ Mβ, which
implies, from Lα ⊇ Lβ and Mα ⊇ Mβ, that λ ∈ Lα and µ ∈ Mα, that is, u ∈ Kα and
condition (2) of Proposition 2.1 is fulfilled.

Since
⋂

0<β<α
Lβ = Lα and

⋂
0<β<α

Mβ = Mα, we get that

⋂

0<β<α

Kβ =
⋂

0<β<α

{λ× µ | λ ∈ Lβ, µ ∈Mβ}

= {λ× µ | λ ∈
⋂

0<β<α

Lβ, µ ∈
⋂

0<β<α

Mβ}

= {λ× µ | λ ∈ Lα, µ ∈Mα}
= Kα,

which means that condition (3) of Proposition 2.1 holds.

Hence, there is a one - to - one correspondence between the family (Kα)α∈L0 of the
prefilters on X × X, defined by (2.3), and the L-filter L ×M on X × X, according to
Proposition 2.1, where

(L ×M)(u) =
∨

v∈Kα, v≤u

α and α-pr (L ×M) = Kα

for all u ∈ LX×X and for all α ∈ L0. 2

3. U-cauchy filters

This section is devoted to speak of the cauchy filters in the L-uniform spaces defined
in [15].

L-uniform spaces. An L-filter U on X ×X is called L-uniform structure on X [15]
if the following conditions are fulfilled:

(U1) (x, x)
. ≤ U for all x ∈ X;

(U2) U = U−1;

(U3) U ◦ U ≤ U .

Where (x, x)
.
(u) = u(x, x), U−1(u) = U(u−1) and (U ◦ U)(u) =

∨
v◦w≤u

U(v ∧ w) for all

u ∈ LX×X , and u−1(x, y) = u(y, x) and (v ◦ w)(x, y) =
∨

z∈X
( w(x, z) ∧ v(z, y)) for all

x, y ∈ X.
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A set X equipped with an L-uniform structure U is called an L-uniform space.

To each L-uniform structure U on X is associated a stratified L-topology τU . The
related interior operator intU is given by:

(intUλ)(x) = U [ẋ](λ)

for all x ∈ X and all λ ∈ LX , where U [ẋ](λ) =
∨

u[µ]≤λ
(U(u) ∧ µ(x)) and u[µ](x) =

∨
y∈X

(µ(y) ∧ u(y, x)). For all x ∈ X we have

U [ẋ] = N (x)

where N (x) is the L-neighborhood filter of the space (X, τU ) at x. That is, an L-filter M
in an L-uniform space (X,U) is said to converge to x ∈ X if M≤ U [ẋ].

Let U be an L-uniform structure on a set X. Then u ∈ LX×X is called a surrounding
provided U(u) ≥ α for some α ∈ L0 and u = u−1 [8].

A subset A ⊆ X, for a surrounding u in (X,U), is called small of order u if u(x, y) ≥ α
for all x, y ∈ A and for some α ∈ L0.

Definition 3.1 In an L-uniform space (X,U), an L-filterM on X is said to be a U-cauchy
filter provided for any surrounding u, there exists a set B ⊆ X such that M≤ Ḃ and B
is small of order u.

Now, we have the following expected result for the convergent L-filters.

Proposition 3.1 Every convergent L-filter in an L-uniform space (X,U) is a U-cauchy
filter.

Proof. Let M be an L-filter on X which converges to x ∈ X. Since M≤ U [ẋ], then we
can choose a set B ⊆ X such that M≤ Ḃ = U [ẋ], that is,

M(λ) ≥
∨

u[µ]≤λ

(U(u) ∧ µ(x)) =
∧

y∈B

λ(y) = Ḃ(λ)

for all λ ∈ LX . Since (x, x)
. ≤ U for all x ∈ X, then u(x, x) ≥ U(u) ≥ α for any

surrounding u and for some α ∈ L0, that is, u(x, x) ≥ α for all x ∈ X and for some α ∈ L0.
Now, x ∈ B where ẋ ≤ U [ẋ] = Ḃ. Also, for any y ∈ B we get that

∨
u[µ]≤λ

(α∧µ(x)) ≤ λ(y),

for which
∨
z
(u(z, y) ∧ µ(z)) ≤ λ(y), and so α ∧ µ(x) ≤ u(x, y) ∧ µ(x) ≤ λ(y), and thus for

all x, y ∈ B, we have u(x, y) ≥ α for some α ∈ L0 and M ≤ Ḃ. Hence, there is a set
B ⊆ X small of order any surrounding u in (X,U) and M ≤ Ḃ, and therefore M is a
U-cauchy filter on X. 2

Let A be a subset of a set X, U an L-uniform structure on X and i : A ↪→ X the
inclusion mapping of A into X. Then the initial L-uniform structure F−L (i × i)(U) of U
with respect to i, denoted by UA, is called an L-uniform substructure of U and (A,UA) an
L-uniform subspace of (X,U) [4].

In particular, we have the following result.

6



Lemma 3.1 Let (X,U) be an L-uniform space and A a non-empty subset of X. Then an
L-filter on A is a UA-cauchy filter if and only if it is a U-cauchy filter.

Proof. Let M be a UA-cauchy filter on A, then there exists B ⊆ A with M ≤ Ḃ and B
is small of order any surrounding uA in (A,UA), which means that there is B ⊆ A ⊆ X
such that M≤ Ḃ and uA(x, y) ≥ α for all x, y ∈ B and for some α ∈ L0, that is, for any
surrounding u in (X,U),

u(x, y) = (u ◦ (i× i))(x, y) = uA(x, y) ≥ α

for all x, y ∈ B and for some α ∈ L0, and then M ≤ Ḃ and B ⊆ X is small of order any
surrounding u in (X,U). Hence, M is a U-cauchy filter.

Conversely; there exists B ⊆ A ⊆ X with M ≤ Ḃ and B is small of order any
surrounding u in (X,U), that is, u(x, y) ≥ α for all x, y ∈ B and for some α ∈ L0, which
means that, for every surrounding uA in (A,UA),

uA(x, y) = (u ◦ (i× i))(x, y) = u(x, y) ≥ α

for all x, y ∈ B and for some α ∈ L0. Hence, M ≤ Ḃ and B ⊆ A is small of order any
surrounding uA in (A,UA), and thus M is a UA-cauchy filter. 2

A mapping f : (X,U) → (Y,V) between L-uniform spaces (X,U) and (Y,V) is said to
be L-uniformly continuous (or (U ,V)-continuous) provided

FL(f × f)(U) ≤ V
holds.

We shall use this result.

Lemma 3.2 Let (X,U) and (Y,V) be L-uniform spaces and f : X → Y a (U ,V)-
continuous mapping. If M is a U-cauchy filter, then FLf(M) is a V-cauchy filter.

Proof. M is a U-cauchy filter on X means that there exists B ⊆ X such that M ≤ Ḃ
and B is small of order any surrounding u in (X,U), that is, M≤ Ḃ and u(x, y) ≥ α for
all x, y ∈ B and for some α ∈ L0, which implies that,

FLf(M) ≤ FLf(Ḃ) = ˙(f(B))

for the set f(B) ⊆ Y . Let v be a surrounding in (Y,V), then from being f is (U ,V)-
continuous, we have

α ≤ V(v) ≤ U(v ◦ (f × f)) = FL(f × f)(U)(v)

for some α ∈ L0, and v = v−1 implies that (v ◦ (f × f))−1 = v−1 ◦ (f × f) = v ◦ (f × f),
that is, u = v ◦ (f × f) is a surrounding in (X,U), which means that

α ≤ u(x, y) = (v ◦ (f × f))(x, y) = v(f(x), f(y))

for all f(x), f(y) ∈ f(B) and for some α ∈ L0. Hence, FLf(M) ≤ ˙(f(B)) for the set
f(B) ⊆ Y and f(B) is small of order every surrounding in (Y,V), and thus FLf(M) is a
V-cauchy filter. 2
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4. The completion of L-uniform spaces

Firstly, we give these general notes.

If (Y, σ) is an L-topological space and X is a non-empty subset of Y , then the initial
L-topology of σ, with respect to the inclusion mapping i : X ↪→ Y , is the L-topology
i−1(σ) = {i−1(λ) | λ ∈ σ} on X and is denoted by σX .

An L-topological space (Y, σ) is called an extension of the L-topological space (X, τ)
if X ⊆ Y , τ = σX and X is σ-dense in Y .

The extension (Y, σ) of (X, τ) is called reduced if for any x 6= y in Y and x ∈ Y \X, we
have Nσ(x) 6= Nσ(y), where Nσ(x) denotes the L-neighborhood filter of (Y, σ) at a point
x ∈ Y .

In [2, 3, 7, 8], we have introduced and studied the notion of GTi-spaces for all i =
0, 1, 2, 3, 31

2 , 4.

GTi-spaces. An L-topological space (X, τ) is called [2, 3, 7]:

(1) GT0 if for all x, y ∈ X with x 6= y we have ẋ 6≤ N (y) or ẏ 6≤ N (x).

(2) GT1 if for all x, y ∈ X with x 6= y we have ẋ 6≤ N (y) and ẏ 6≤ N (x).

(3) GT2 if for all x, y ∈ X with x 6= y, we have M 6≤ N (x) or M 6≤ N (y) for all L-filters
M on X.

(4) regular if for all x 6∈ F and F = clτF , we have N (x) ∧N (F ) does not exist.

(5) GT3 if it is GT1 and regular.

(6) completely regular if for all x 6∈ F ∈ τ ′, there exists a L- continuous mapping
f : (X, τ) → (IL,=) such that f(x) = 1 and f(y) = 0 for all y ∈ F .

(7) GT3 1
2

( or L-Tychonoff ) if it is GT1 and completely regular.

Denote by GTi-space the L- topological space which is GTi, i = 0, 1, 2, 3, 31
2 .

Proposition 4.1 [2, 3, 7] Every GTi-space is GTi−1-space for each i = 1, 2, 3, and every
GT3 1

2
-space is a GT3-space.

Lemma 4.1 If the extension (Y, σ) of (X, τ) is a GT0-space, then (Y, σ) is a reduced
extension of (X, τ).

Proof. Clear. 2

Lemma 4.2 For a GT0-space (X, τ), the reduced extension (Y, σ) also is a GT0-space.

Proof. For all x 6= y in Y \X, we have Nσ(x) 6= Nσ(y). Also for all x 6= y in X, we have
Nτ (x) 6= Nτ (y). Hence, for all x 6= y in Y we get that Nσ(x) 6= Nσ(y), and thus (Y, σ) is
a GT0-space. 2
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Remark 4.1 Let (X, τ) be an L-topological space and X ⊆ Y . If we succeed in defining
an L-topology σ on Y such that (Y, σ) is an extension of (X, τ), then X is a σ-dense
in Y implies that every σ-neighborhood of each y ∈ Y intersects X, hence the infimum
Nσ(y) ∧ Ẋ exists where, for all f, g ∈ LX , intσf(y) = f(x) for some x ∈ X implies
intσf(y) ∧ ∧

x∈X
g(x) ≤ f(x) for some x ∈ X and also intσf(y) ∧ ∧

x∈X
g(x) ≤ g(x) for all

x ∈ X, and thus intσf(y) ∧ ∧
x∈X

g(x) ≤ sup(f ∧ g) for all f, g ∈ LX .

Definition 4.1 Let (X, τ), (Y, σ) be two L- topological spaces and (Y, σ) an extension of
(X, τ). Then the L-filter Nσ(x) ∧ Ẋ on X, denoted by Mx, will be called a trace filter at
x ∈ Y into Y and Mx = Nτ (x) whenever x ∈ X. Clearly, Mx

-
σ

x.

Definition 4.2 Let (X, τ) and (Y, σ) be two L-topological spaces, (X ′, τ∗) an extension
of (X, τ) and let f : X → Y be a (τ, σ)-continuous mapping. Then the restriction mapping
g|X on X of the (τ∗, σ)-continuous mapping g : X ′ → Y , which coincides with f , is called
a continuous extension of f into X ′.

Remark 4.2 Let (X, τ) and (Y, σ) be two L-topological spaces, (X ′, τ∗) an extension of
(X, τ), f : X → Y a mapping and Mx = Nτ∗(x)∧Ẋ a trace filter on X at x ∈ X ′. For the
existence of a continuous extension g : X ′ → Y , it is necessary that f is (τ, σ)-continuous
and FLf(Mx) -

σ
x for a trace filter Mx at x ∈ X ′. If (Y, σ) is a regular space, then these

conditions also are sufficient. It is clear that Mx
-
τ∗ x.

Lemma 4.3 With the notations in Remark 4.2, let g1 : X ′ → Y and g2 : X ′ → Y be
(τ∗, σ)-continuous, (Y, σ) is a GT2-space and g1|X = g2|X = f . Then g1 = g2.

Proof. Let x ∈ X ′ be arbitrary andMx
-
τ∗ x. From Lemma 2.1, we get that FLg1(Mx) -

σ
g1(x)

and FLg2(Mx) -
σ

g2(x), and also we have FLg1(Mx) = FLg2(Mx) = FLf(Mx) an L-

filter on Y , and since (Y, σ) is a GT2-space, then g1(x) = g2(x). Thus g1 = g2. 2

Lemma 4.4 An extension (Y, σ) of (X, τ) is reduced if and only if Mx 6= My for all
x 6= y in Y and x ∈ Y \X.

Proof. The proof comes from that

Mx = Nσ(x) ∧ Ẋ 6= Nσ(y) ∧ Ẋ = My

if and only if Nσ(x) 6= Nσ(y). 2

Definition 4.3 An L-uniform space (Y,U∗) is called an extension of the L-uniform space
(X,U) if X ⊆ Y , U = U∗X and X is a τU∗-dense in Y .

Definition 4.4 An L-uniform space (Y,U∗) is called a reduced extension of the L-uniform
space (X,U) if (Y, τU∗) is a reduced extension of (X, τU ).
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An L-uniform structure U on a set X is called separated [5] if for all x, y ∈ X with
x 6= y there is u ∈ LX×X such that U(u) = 1 and u(x, y) = 0. The space (X,U) is called
separated L-uniform space.

Proposition 4.2 [5] Let X be a set, U an L-uniform structure on X and τU the L-topology
associated with U . Then

(X,U) is separated if and only if (X, τU ) is GT0-space.

Lemma 4.5 If (X,U) is a separated L-uniform space and (Y,U∗) is a reduced extension
of (X,U), then (Y,U∗) is separated as well.

Proof. From Proposition 4.2, we get that (X, τU ) is a GT0-space and since (Y, τU∗) is a
reduced extension of (X, τU ), then by Lemma 4.2 we have (Y, τU∗) is a GT0-space. Again
by Proposition 4.2, we get that (Y,U∗) is separated. 2

Now, we give this definition.

Definition 4.5 An L-uniform space (X,U) is called complete if every U-cauchy filter M
on X is convergent.

Definition 4.6 An L-uniform space (Y,U∗) is called a completion of the L-uniform space
(X,U) if it is a reduced extension of (X,U) and U∗ is complete.

Lemma 4.6 The completion of a separated L-uniform space is separated as well.

Proof. The proof comes from Lemma 4.5. 2

5. The completion of L-topological groups

In this section, we introduce the main notion of this paper, that the completion of
L-topological groups using the completion of L-uniform spaces.

L-topological groups. Let G be a multiplicative group. We denote, as usual, the
identity element of G by e and the inverse of an element a of G by a−1.

Definition 5.1 [1, 6] Let G be a group and τ an L-topology on G. Then (G, τ) will be
called an L-topological group if the mappings

π : (G×G, τ × τ) → (G, τ) defined by π(a, b) = ab for all a, b ∈ G

and
i : (G, τ) → (G, τ) defined by i(a) = a−1 for all a ∈ G

are L-continuous. π and i are the binary operation and the unary operation of the inverse
on G, respectively.
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For all λ ∈ LG, denote by λi the L-set λ◦i in G, that is, λi(x) = λ(x−1) for all x ∈ G.
We also denote FLπ(L ×M) by LM and FLi(M) by Mi, which means that LM(λ) =
L ×M(λ ◦ π) and Mi(λ) = M(λi) for all L-filters L,M on G and all L-sets λ ∈ LG.

A surrounding u ∈ LX×X is called left (right) invariant provided

u(ax, ay) = u(x, y) (u(xa, ya) = u(x, y)) for all a, x, y ∈ X.

U is called a left (right) invariant L-uniform structure if U has a valued L-filter base
consists of left (right) invariant surroundings [8].

Proposition 5.1 [8] Let (G, τ) be an L-topological group. Then there exist on G a unique
left invariant L-uniform structure U l and a unique right invariant L-uniform structure Ur

compatible with τ , constructed using the family (α-prN (e))α∈L0 of all filters α-prN (e),
where N (e) is the L-neighborhood filter at the identity element e of (G, τ), as follows:

U l(u) =
∨

v∈U l
α, v≤u

α and Ur(u) =
∨

v∈Ur
α, v≤u

α, (5.1)

where
U l

α = α-prU l and Ur
α = α-prUr (5.2)

are defined by

U l
α = {u ∈ LG×G | u(x, y) = (λ ∧ λi)(x−1y) for some λ ∈ α-prN (e)} (5.3)

and
Ur

α = {u ∈ LG×G | u(x, y) = (λ ∧ λi)(xy−1) for some λ ∈ α-prN (e)} (5.4)

We should notice that we shall fix the notations U l, Ur, U l
α and Ur

α along the paper to
be these defined above.

Definition 5.2 Ub = U l ∨ Ur is called the bilateral L-uniform structure of the L-
topological group (G, τ), where U l and Ur are defined in (5.1) - (5.4).

Remark 5.1 M is a Ub-cauchy filter if it is U l-cauchy filter and Ur-cauchy filter simul-
taneously.

Remark 5.2 (cf. [8]) For the L-topological group (G, τ), the elements of U l
α (Ur

α) are left
(right) invariant surroundings. Moreover, (U l

α)α∈L0 ((Ur
α)α∈L0) is a valued L-filter base for

the left (right) invariant L-uniform structure U l (Ur) defined by (5.1) - (5.4), respectively.

Now, suppose that (G, τ) has a countable L-neighborhood filter N (e) at the identity
e. Since any L-topological group, from Proposition 5.1, is uniformizable, then the left and
the right invariant L-uniform structures U l and Ur, constructed also in Proposition 5.1,
has, from Remark 5.2, a countable L-filter base U l

1
n

and Ur
1
n

, respectively, n ∈ N.

We may recall that if (G, τ) is an L-topological group and A is a subgroup of G, then
the L-topological subspace (A, τA) is called an L-topological subgroup [6].

11



Proposition 5.2 Let (A, τA) be an L-topological subgroup of an L-topological group (G, τ),
and further U be a complete L-uniform structure on G compatible with τ and UA is the
L-uniform structure on A compatible with τA. Then

(d1) If L and M are UA-cauchy filters, then LM is a UA-cauchy filter as well,

(d2) If M is a UA-cauchy filter, then Mi is a UA-cauchy filter as well.

Proof. By Lemma 3.1, L and M are both U-cauchy filters too, thus U is complete implies
L -

τ
x and M -

τ
y for some x, y ∈ G, that is, L ≤ N (x) and M≤ N (y). Now, for each

ξ ∈ LG we have

LM(ξ) = FLπ(L ×M)(ξ)
= L ×M(ξ ◦ π)
=

∨

λ×µ≤ξ◦π
L(λ) ∧M(µ)

≥
∨

λ×µ≤ξ◦π
N (x)(λ) ∧N (y)(µ)

=
∨

λ×µ≤ξ◦π
intτλ(x) ∧ intτµ(y)

≥ intτξ(xy)
= N (xy)(ξ).

That is, LM -
τ

xy and hence, LM is a U-cauchy filter and at the same time a UA-cauchy

filter from Proposition 3.1 and Lemma 3.1.

Similarly, if M is a UA-cauchy filter, and thus a U-cauchy filter, then M -
τ

x, and

hence by Lemma 2.1, Mi(λ) = FLi(M) -
τ

i(x) = x−1. This means thatMi is a U-cauchy

filter and also a UA-cauchy filter. 2

Definition 5.3 Let us call an L-uniform structure U of an L-topological group (G, τ)
admissible if τU = τ and the conditions (d1) and (d2) in Proposition 5.2 are fulfilled.

Definition 5.4 An L-topological group (G, τ) is called complete if its bilateral L-uniform
structure Ub is complete. (G, τ) is called left complete (right complete) if it is complete
and its left (right) L-uniform structure U l (Ur) is admissible.

Lemma 5.1 The inverse mapping i : (G, τ) → (G, τ), i(x) = x−1, of any L-topological
group (G, τ) is (U l,Ur)-continuous and (Ur,U l)-continuous, and moreover Ur = FL(i ×
i)(U l), U l = FL(i× i)(Ur).

Proof. For u ∈ U l
α and for some λ ∈ α - prN (e), we have

(u ◦ (i× i))(x, y) = u(x−1, y−1) = (λ ∧ λi)(xy−1) = w(x, y)
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for some w ∈ Ur
α. Since FL(i × i)(U l)(u) = U l(u ◦ (i × i)) for all u ∈ LX×X , then

FL(i×i)(U l)(u) = Ur(u) for all u ∈ LX×X , and hence i is a (U l,Ur)-continuous. Similarly,
we get that FL(i× i)(Ur) = U l, and thus i is a (Ur,U l)-continuous. 2

Proposition 5.3 If M is a U l-cauchy filter in an L-topological group (G, τ), then Mi is
a Ur-cauchy filter and the converse.

Proof. Since, from Lemma 5.1, the mapping i : (G,U l) → (G,Ur) is (U l,Ur)-continuous,
thenM is a U l-cauchy filter implies, from Lemma 3.2, that FL(i)(M) = Mi is a Ur-cauchy
filter. Similarly, the converse follows. 2

Proposition 5.4 [15] Let (X,U) and (Y,V) be two L-uniform spaces and f : X → Y
a mapping. Then the mapping f : (X, τU ) → (Y, τV) is L-continuous if and only if f is
(U ,V)-continuous.

Here, we give this result.

Lemma 5.2 If U and V are two L-uniform structures on an L-topological group (G, τ)
and both L and M are U- (V-)cauchy filters on G, then L×M is a U ×U- (V ×V-)cauchy
filter on G×G.

Proof. From Proposition 2.2, L×M is an L-filter on G×G. Let L and M be U-cauchy
filters on G, then there exist A, B ⊆ G such that L ≤ Ȧ and M ≤ Ḃ and A, B are small
of order every surrounding u in (G,U). Now,

(L ×M)(u) =
∨

λ×µ≤u

(L(λ) ∧M(µ))

≥
∨

λ×µ≤u

(Ȧ(λ) ∧ Ḃ(µ))

=
∨

λ×µ≤u

∧

x∈A, y∈B

λ(x) ∧ µ(y)

=
∨

λ×µ≤u

∧

x∈A, y∈B

λ× µ(x, y)

= u(A,B)
= ˙(A×B)(u)

for all u ∈ LG×G. That is, there exists A×B ⊆ G×G such that L ×M ≤ ˙(A×B).

Let ψ : (G × G) × (G × G) → L be a mapping and u a surrounding in (G,U), then
from Proposition 5.4, π is (U × U ,U)-continuous, and then

α ≤ U(u) ≤ FL(π × π)(U × U)(u) = U × U(u ◦ (π × π)) = U × U(ψ)

and also, u = u−1 implies that

ψ−1 = (u ◦ (π × π))−1 = u−1 ◦ (π × π) = u ◦ (π × π) = ψ,
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that is, ψ is a surrounding in (G×G,U ×U), and for any surrounding ψ in (G×G,U ×U),
there exists a surrounding u in (G,U) such that ψ = u ◦ (π × π).

Now, α ≤ u(x, y) for all x, y ∈ A and β ≤ u(r, s) for all r, s ∈ B and for some
α, β ∈ L0 imply that ψ((x, r), (y, s)) = (u ◦ (π × π))((x, r), (y, s)) = u(xr, ys), and by
choosing (x, y) = (e, e) or (r, s) = (e, e), we get that u(xr, ys) ≥ γ for some γ ∈ L0, that
is, for all (x, r), (y, s) ∈ A×B, we have ψ((x, r), (y, s)) ≥ γ for some γ ∈ L0, which means
that A × B is small of order every surrounding in (G × G,U × U), and therefore L ×M
is a U × U-cauchy filter. 2

Proposition 5.5 If U l and Ur are the left and the right L-uniform structures of an L-
topological group (G, τ) and both of L and M are U l- (Ur-)cauchy filters, then LM has
the same property.

Proof. From Lemma 5.2 and Lemma 3.2, we have LM = FLπ(L×M) is a U l- (Ur-)cauchy
filter. 2

Accordingly, the property of being admissible depends for U l and Ur on the fact
whether condition (d2) of Proposition 5.2 is fulfilled.

Proposition 5.6 The following statements are equivalent in any L-topological group (G, τ).

(1) Together with M, Mi is a U l-cauchy filter,

(2) Together with M, Mi is a Ur-cauchy filter,

(3) Every U l-cauchy filter is a Ur-cauchy filter,

(4) Every Ur-cauchy filter is a U l-cauchy filter,

(5) U l is admissible,

(6) Ur is admissible.

Proof. (1) ⇐⇒ (5) and (2) ⇐⇒ (6) come from Proposition 5.5.

(1) ⇐⇒ (2) follows from Proposition 5.3 and that (Mi)i = M.

From (1), since M is a U l-cauchy filter implies that Mi is a U l-cauchy filter, and thus
M is a Ur-cauchy filter according to Proposition 5.3, then (1) =⇒ (3); On the other hand,
if M is a U l-cauchy filter, then it is a Ur-cauchy filter and thus Mi is a U l-cauchy filter.
That is, (1) ⇐⇒ (3).

(2) ⇐⇒ (4) is obtained similarly. 2

Proposition 5.7 If the left L-uniform structure U l or the right L-uniform structure Ur

of an L-topological group (G, τ) is complete, then the other one is complete as well and
both are admissible.
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Proof. If U l is complete and M is a Ur-cauchy filter, then from Proposition 5.3, Mi is
a U l-cauchy filter, thus Mi -

τ
x in G and then M -

τ
x−1. Hence, Ur is complete, and

the completeness of U l follows by the same way from the completeness of Ur.

At last, M is a U l-cauchy filter implies that M converges to x ∈ G, that is, M≤ U l[ẋ],
and thenMi ≤ U l[ ˙x−1] and from Proposition 3.1, Mi is a U l-cauchy filter. Proposition 5.6
implies that both U l and Ur are admissible. 2

Lemma 5.3 If Ub is the bilateral L-uniform structure of an L-topological group (G, τ),
then i is (Ub,Ub)-continuous.

Proof. From that U l ≤ Ub and Ur ≤ Ub, we get that FL(i× i)U l ≤ Ub and FL(i× i)Ur ≤
Ub, and thus

FL(i× i)Ub = FL(i× i)U l ∨ FL(i× i)Ur ≤ Ub.

Hence, i is (Ub,Ub)-continuous. 2

L-metric spaces. We use here the notion of L-metric space defined by means of the
notion of L-real numbers in [12]. By an L-real number is meant [12] a convex, normal,
compactly supported and upper semi-continuous L-subset of the set of all real numbers
R. The set of all L-real numbers is denoted by RL. R is canonically embedded into
RL, identifying each real number a with the crisp L-number a∼ defined by a∼(ξ) = 1 if
ξ = a and 0 otherwise. The set of all positive L-real numbers is defined and denoted by:
R∗

L = {x ∈ RL | x(0) = 1 and 0∼ ≤ x} [12].

A mapping % : X×X −→ R∗
L is called an L-metric [12] on X if the following conditions

are fulfilled:

(1) %(x, y) = 0∼ if and only if x = y

(2) %(x, y) = %(y, x)

(3) %(x, y) ≤ %(x, z) + %(z, y).

If % : X ×X −→ R∗
L satisfied the conditions (2) and (3) and the following condition:

(1)′ %(x, y) = 0∼ if x = y

then it is called an L-pseudo-metric on X.

A set X equipped with an L-pseudo-metric (L-metric) % on X is called an L-pseudo-
metric (L-metric) space.

To each L-pseudo-metric (L-metric) % on a set X is generated canonically a stratified
L-topology τ% on X which has {ε ◦ %x | ε ∈ E , x ∈ X} as a base, where %x : X → R∗

L is
the mapping defined by %x(y) = %(x, y) and

E = {α ∧Rδ|R∗
L
| δ > 0, α ∈ L } ∪ {α | α ∈ L },

here α has R∗
L as domain.
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An L-topological space (X, τ) is called pseudo-metrizable (metrizable) if there is an
L-pseudo-metric (L-metric) % on X inducing τ , that is, τ = τ%.

An L-pseudo-metric % is called left (right) invariant if

%(x, y) = %(ax, ay) (%(x, y) = %(xa, ya)) for all a, x, y ∈ X.

An L-topological group (G, τ) is called separated if for the identity element e, we have∧
λ∈α-prN (e)

λ(e) ≥ α, and
∧

λ∈α-prN (e)
λ(x) < α for all x ∈ G with x 6= e and for all α ∈ L0

[8].

Proposition 5.8 [9] Let (G, τ) be a ( separated ) L-topological group. Then the following
statements are equivalent.

(1) τ is pseudo-metrizable (metrizable);

(2) e has a countable L-neighborhood filter N (e);

(3) τ can be induced by a left invariant L-pseudo-metric (L-metric);

(4) τ can be induced by a right invariant L-pseudo-metric (L-metric).

Definition 5.5 An L-uniform structure U on a set X is called pseudo-metrizable (metriz-
able) if there exists a countable L-uniform base for U (and U is separated).

Proposition 5.9 [8] Let (G, τ) be an L-topological group. Then there exist on G a unique
left invariant L-uniform structure U l and a unique right invariant L-uniform structure Ur

compatible with τ , constructed with (5.1) - (5.4).

Proposition 5.10 For any (separated) L-topological group (G, τ), The L-uniform struc-
tures U l, Ur and Ub constructed in (5.1) - (5.4) are pseudo-metrizable (metrizable).

Proof. From Proposition 5.8, τ = τ%1 = τ%2 where %1 is a left, %2 is a right invariant
L-pseudo-metric (L-metric) on G, and then U%1 is left invariant and U%2 is right invariant.
From Proposition 5.9, U l and Ur are unique, that is, U%1 = U l, U%2 = Ur and U l, Ur are
pseudo-metrizable (metrizable). Moreover, τUb = τU l∨Ur = τU l ∨ τUr = τ . Hence, Ub is
pseudo-metrizable (metrizable) as well. 2

Proposition 5.11 [4] Let (X,U) be an L-uniform space, (A,UA) an L-uniform subspace
of (X,U) and (τU )A the L-subtopology of the L-topology τU associated with U . Then the
L-topology associated to UA coincides with (τU )A, that is, τ(UA) = (τU )A.

Lemma 5.4 Let (A, τA) be an L-topological subgroup of an L-topological subgroup (G, τ),
and U l, Ur and Ub the left, the right and the bilateral L-uniform structures of (G, τ). Then
the corresponding L-uniform structures of (A, τA) are (U l)A, (Ur)A and (Ub)A, respectively.
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Proof. From Proposition 5.11, we have τ(U l)A
= (τU l)A = τA and, together with U l,

(U l)A is left invariant as well, and hence (U l)A is the left invariant L-uniform structure of
(A, τA). By the same (Ur)A is the right invariant L-uniform structure of (A, τA) as well.
Moreover,

τUb
A

= τ(U l
A∨Ur

A) = τU l
A
∨ τUr

A
= (τU l)A ∨ (τUr)A = (τUb)A = τA. 2

Here, we give the essential result in this section.

Definition 5.6 For a separated L-topological group (G, τ), let us call (H,σ) a completion
of (G, τ) if it is complete separated L-topological group and in which (G, τ) is a dense
subgroup.

In the following we need this result.

Proposition 5.12 [8] Let (G, τ) be an L-topological group. Then the following statements
are equivalent.

(1) The L-topology τ is GT0.

(2) The L-topology τ is GT2.

(3) The L-topological group (G, τ) is separated.

Proposition 5.13 Let (G, τ) be a separated L-topological group, U an admissible L-
uniform structure on G, and (H,V) the completion of (G,U). Then an operation π′ :
H ×H → H can be defined on H in a unique way so that H equipped with π′ is a group,
and (H, τV) is an L-topological group of which G is a subgroup.

Proof. Let σ = τV . If π′ : H ×H → H is defined by π′(y, z) = yz for all y, z ∈ H, then
π′|G×G = π. Now, let Lx and My be two trace filters on H at x and y into H, respectively.
Since Lx

-
σ

x and My
-
σ

y, that is, Lx(λ) ≥ intσλ(x) and My(µ) ≥ intσµ(y), then

LxMy(ξ) = FLπ′(Lx ×My)(ξ)
= Lx ×My(ξ ◦ π′)

=
∨

λ×µ≤ξ◦π′
Lx(λ) ∧My(µ)

≥
∨

λ×µ≤ξ◦π′
intσλ(x) ∧ intσµ(y)

≥ intσξ(xy)
= Nσ(xy)(ξ),

and then LxMy
-
σ

xy. From that U is separated and from Lemma 4.6 and Proposi-

tion 5.12, we get (H, σ) is a GT2-space, and therefore these properties, using Lemma 4.3
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and Remark 4.2, define π′ in a unique way as the only continuous extension of π into
H × H. Also, if i′ : H → H is defined by i′(y) = y−1 for all y ∈ H, then i′|G = i and
FLi′(Lx) = Li′

x
-
σ

x−1 for any trace filter Lx on H, and i′ is (σ, σ)-continuous, that is, as

in before, i′ is a continuous extension of i defined in a unique manner.

Hence, π′ is (σ × σ, σ)-continuous and i′ is (σ, σ)-continuous imply that (H, σ) is an
L-topological group in which (G, τ) is an L-topological subgroup. 2

Proposition 5.14 Under the hypothesis of Proposition 5.13, if the left, the right or the
bilateral L-uniform structure of (H, τU∗) is U∗l, U∗r, or U∗b respectively, then the corre-
sponding L-uniform structures of (G, τ) are (U∗l)G, (U∗r)G, or (U∗b)G.

Proof. It is a consequence of Lemma 5.4. 2

Proposition 5.15 Let (G, τ) be a separated L-topological group, Ub its bilateral L-uniform
structure, and (H, σ = τV) the L-topological group constructed in Proposition 5.13 with
the choice V = Vb. Then (H,σ) is a completion of (G, τ).

Proof. If U = Ub, then Proposition 5.13 can be applied and Ub is admissible where both
of U l and Ur are admissible. Also, V is a complete separated L-uniform structure such that
σ = τV , G is σ-dense in H and (V)G = Ub. On the other hand, by Proposition 5.14, for
the bilateral L-uniform structure Vb of the L-topological group (H, σ) we have σ = τ(Vb)

and (Vb)G = Ub. Therefore, the bilateral L-uniform structure Vb of (H, σ) is complete and
(H, σ) is a completion of (G, τ). 2
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[18] S. E. Rodabaugh, E. P. Klement, U.Höhle; Applications of Category Theory to Fuzzy Sub-
sets, Kluwer Academic Publishers, (1992), pp 109 - 136.

[19] L. A. Zadeh; Fuzzy sets, Information and Control 8 (1765) 338 - 353.

19


